
Lagrangian-Eulerian Multiscale Data Assimilation in Physical

Domain based on Conditional Gaussian Nonlinear System

Hyeonggeun Yun1 and Quanling Deng∗2

1School of Computing, Australian National University, Canberra, ACT 2601, Australia
(Geun.Yun@anu.edu.au)

2School of Computing, Australian National University, Canberra, ACT 2601, Australia
(Quanling.Deng@anu.edu.au)

September 19, 2025

Contents

1 Introduction 2

2 Background 4
2.1 Two-layers Quasi-geostrophic (QG) model . 4
2.2 Numerical schemes . 5
2.3 Conditional Gaussian Nonlinear System (CGNS) . 7

3 Numerical solution of the QG model 9

4 Implementation of the QG DA via CGNS 12
4.1 Estimating vorticity q given streamline function ψ for both layers 12
4.2 Estimating a second layer given ψ of first layer . 14

5 Simulation Results 17

6 Evaluation of the DA 19

7 Conclusion 21

8 Supporting Information 22
8.1 4× 4 grid discretisation for ψ update . 22
8.2 Derivation of a1 from a1ψ = −J(ψ, q) . 23
8.3 Derivation of A1 and a1 CGNS matrices for recovering the second layer given the first layer . 23

∗Supervisor

1

ar
X

iv
:2

50
9.

14
58

6v
1

 [
cs

.C
E

]
 1

8
Se

p
20

25

https://arxiv.org/abs/2509.14586v1

Keywords: Data assimilation, Lagrangian-Eulerian Multiscale Data Assimilation, Quasi geostrophic model,
Conditional nonlinear gaussian system, Computational Science

Abstract

This research aims to further investigate the process of Lagrangian-Eulerian Multiscale Data Assimila-
tion (LEMDA) by replacing the Fourier space with the physical domain. Such change in the perspective
of domain introduces the advantages of being able to deal in non-periodic system and more intuitive
representation of localised phenomena or time-dependent problems. The context of the domain for this
paper was set as sea ice floe trajectories to recover the ocean eddies in the Arctic regions, which led the
model to be derived from two-layer Quasi geostrophic (QG) model. The numerical solution to this model
utilises the Conditional Gaussian Nonlinear System (CGNS) to accommodate the inherent non-linearity
in analytical and continuous manner. The normalised root mean square error (RMSE) and pattern cor-
relation (Corr) are used to evaluate the performance of the posterior mean of the model. The results
corroborate the effectiveness of exploiting the two-layer QG model in physical domain. Nonetheless, the
paper still discusses opportunities of improvement, such as deploying neural network (NN) to accelerate
the recovery of local particle of Lagrangian DA for the fine scale.

1 Introduction

Data assimilation (DA) has become an essential tool for improving predictions of complex physical systems,
especially in fields like meteorology, oceanography and climate science, where observational data are sparse
or noisy with high model uncertainties [1, 6]. The purpose of DA is to merge observational data with
numerical model predictions to achieve an optimal estimate of the system’s state [6]. By assimilating real-
time observations into predictive models, DA can reduce forecast errors and enhance temporal consistency
of simulations.

Traditional DA methods, however, face limitations when applied to systems characterised by multi-scale
dynamics and significant nonlinearity. Lagrangian DA, for example, is well-suited to capturing small-scale
structures through particle trajectories but is computationally demanding due to high dimensionality and
nonlinearity in the Lagrangian observations [5]. On the other hand, Eulerian DA provides computational
efficiency in representing large-scale flow fields on fixed grids, yet often lacks the resolution needed for
smaller-scale features [9]. These challenges are exacerbated in environments with both large-scale and fine-
scale structures, such as ocean eddies or atmospheric fronts, where accurate tracking of particle movements
is essential for high-fidelity modelling.

The Lagrangian-Eulerian Multiscale Data Assimilation (LEMDA) framework, as introduced by Deng et
al., aims to address these challenges by combining the strengths of both approaches [5]. LEMDA leverages
the Eulerian DA for capturing large-scale dynamics (often by discretised grid cells) while using Lagrangian
DA to resolve fine-scale features (often by individual particles), achieving a balanced and computationally
efficient multiscale framework. It relies on the Boltzmann equation for deriving an Eulerian description
of particle statistics, allowing for a continuum model that smooths out the noise and inherent in particle
interactions and collisions. Moreover, its reliance on closed-form analytic solutions, as opposed to ensemble
methods, offers significant computational advantages, which would be further amplified in high-dimensional,
nonlinear applications. The outline of the framework is illustrated in Figure 1 below.

2

Figure 1: Overview of the LEMDA framework [5]. Panel (a): the Lagrangian observations and Lagrangian
DA. Note the strong nonlinearity in the observational process of the Lagrangian DA. Panel (b): the Eulerian
description of particle statistics, which can be derived from the Boltzmann description of the particle system.
Panel (c): applying the Eulerian DA to the cases where the observed tracers are the ice floes with collisions.
Panel (d): applying the Lagrangian DA to each grid cell to recover refined features that are missed by the
large-scale Eulerian DA in the multiscale DA framework. Panel (e): the development of cheap stochastic
surrogate models for the underlying flow field, which is a crucial part of allowing the analytic solvers of
both the Eulerian and the Lagrangian DAs. Panel (f): rigorous derivation of reduced-order DA schemes for
Lagrangian DA.

This research extends the LEMDA framework by exploring its application within the physical domain,
moving beyond the current reliance on Fourier space. This shift to a physical domain enables the model
to address localised, time-dependent phenomena more intuitively, which are critical in applications like sea
ice floe tracking and ocean eddy recovery in Arctic regions. Specifically, the model is based on a two-layer
quasi-geostrophic (QG) system, which provides a foundational structure to simulate large-scale geophysical
flows with realistic assumptions. By implementing the Conditional Gaussian Nonlinear System (CGNS), this
paper also addresses the inherent nonlinearity within the system, offering a solution to handle multiscale
interactions in the physical domain.

The primary objective is to evaluate the effectiveness of applying the LEMDA framework, particularly
the Eulerian part, to a two-layer QG model, which the DA will be aided by CGNS. The performance in
recovering the posterior mean of the assimilated state was measured by commonly accepted metrics, including
root mean square error (RMSE) and pattern correlation (Corr). Consequently, feasibility and insights of
a physical domain-based LEMDA framework was validated through this work, setting the stage for future
enhancements in multiscale data assimilation.

3

2 Background

2.1 Two-layers Quasi-geostrophic (QG) model

As the aim of the research focuses on the data assimilation framework for a specific landscape like Arctic,
careful consideration is required in deciding the appropriate ocean or atmospheric model. Quasi-geostrophic
(QG) model was deemed to be suitable with the following assumptions. The model is underpinned by a
small Rossby number (Ro << 1) that makes the flow nearly geostrophic, which implies the inertia forces are
significantly smaller than Coriolis forces [18, 4]. The Rossby number is given by

Ro =
U

fL
, (1)

where U is a typical horizontal velocity, L is the horizontal length scale, and f is the Coriolis parameter.
Such discrepancy suits a condition with predominantly horizontal flow. Another underlying assumption is
the assertion of a hydrostatic balance in vertical motion [18, 4]. This means the vertical pressure gradient
is balanced by the gravitational force, effectively allowing the model to ignore vertical accelerations. This is
captured by the equation

∂p

∂z
= −ρg, (2)

where p is the pressure, z is the vertical coordinate, ρ is the fluid density and g is the acceleration due
to gravity. Furthermore, the flow is assumed to be incompressible in baroclinic models, which means the
density does not change significantly with time or space in the horizontal directions [18, 4]. This assumption
makes the use of a constant density possible. Altogether, it should be clear that the assumptions resembles
of a large-scale, slowing-moving flows in the ocean and atmosphere like Arctic.

The main advantage of QG model in the given context is its extension to work for two layers. This two-
layer QG can recover the important physical attributes at one depth, such as streamline function (ψ) and
potential vorticity (q), by observing that of other depth. The equations below that establishes relationship
between the layers are extremely useful, as they effectively set up a potential for inductive recovery.

∂qi
∂t

+ J(ψi, qi) = 0 (3)

qi = ∇2ψi + βy +
k2d
2
(ψj − ψi), (4)

where i = {1, 2} denotes the level index, j = 3− i and the Jacobian is J(ψi, qi) = ∂ψ
∂x

∂q
∂y −

∂ψ
∂y

∂q
∂x . For the sake

of simplicity, the model is assumed to have no external force on the surface and depths of layers are even.
Hence, the assumptions result in 0 for the RHS of Equation 3 and k2d

2 for Equation 4, respectively. Along with
the assumptions, Table 1 illustrates the scale of the model, by providing the typical order of magnitude of
relevant parameters. These were then adjusted and scaled accordingly throughout any computation involving
the QG model (see Table 3). The Laplacian discretisation constant will be further discussed in Section 3, as
it has been manually derived from the discretisation process.

4

Name Symbol Typical order of magnitude

Streamline function ψ Heavily depends on the initial streamline function
Potential vorticity q Heavily depends on the initial streamline function
Coriolis parameter f0 10−4s−1

Beta parameter β 10−11t−1s−1

Rossby radius of deformation Ld 50 ∼ 100km
Layer thickness H 100 ∼ 1000m

Buoyancy frequency N 10−2s−1

Square of the deformation wavenumber k2d 10−7m−2

Laplacian Discretisation constant Ω Heavily depends on other parameters

Table 1: Table of parameters for the two-layer QG model.

Despite a clear existence of coupling between layers from Equation 4, such link is not all that strong
as ψj only appears once from the perspective of layer i. Another notable insight is the absence of time
respective term for ψi, insinuating its necessity to couple with qi in order to exploit the parameter in temporal
perspective. Such property is to be later utilised in constructing the CGNS framework (see Section 2.3).

2.2 Numerical schemes

Before getting further into the details of CGNS, various numerical schemes to solve the model should first
be discussed to identify their pros and cons as well as any notable insights. For the numerical weather
prediction and fluid dynamics particularly, the accurate and stable numerical solution of the QG model is
paramount. The reviews below provides key numerical schemes relevant to the QG model with insights into
their accuracy, stability and applicability in varying modelling contexts.

Chehab and Moalla provide a foundational perspective by exploring several numerical approaches for the
QG model, with a focus on the Forward Euler scheme [2]. The scheme approximates time derivative by the
finite difference:

ϕn+1 = ϕn +∆tf(ϕn), (5)

where ϕ is the state variable, such as potential vorticity or streamline function, f(ϕn) is the evaluated rate
of change at the current time step, and ∆t represents the time-step size. This formula’s simplicity enables
ease of implementation but may have limited stability and accuracy when applied to nonlinear systems
with high-frequency oscillations, common in QG models. They discuss how variations in key parameters,
such as the Rossby number and Reynolds number, influence divergence and model stability. They highlight
that improper tuning of these parameters, or selection of a large ∆t, can induce numerical instability. This
analysis reinforces the necessity of careful time-step and parameter selection to maintain computational
robustness, providing a baseline understanding of simple, explicit schemes. The discussion sets the stage for
introducing more advanced methods that build upon the Forward Euler scheme’s insights.

To leverage the lessons from the introductory findings, Medjo presented the leapfrog scheme as a second-
order accurate alternative, offering a greater precision than the Forward Euler [12] . The scheme calculates
the state variable at the next time step (ϕn+1) based on the state two steps back (ϕn−1), improving precision
for oscillatory solutions:

ϕn+1 = ϕn−1 + 2∆tf(ϕn). (6)

5

However, a well-known drawback of the scheme is its susceptibility to time-splitting errors due to oscillatory
instabilities inherent in two-step methods. To address this issue, Medjo recommends the Asselin-Robert
time filter, a technique that dampens the time-splitting oscillations but at the cost of reducing the scheme’s
accuracy to first-order. The filter is defined as:

ϕn+1 = ϕn+1 − ϵ(ϕn+1 − 2ϕn + ϕn−1), (7)

where ϵ is a small coefficient that controls the damping strength. Despite the reduced accuracy to first-
order, it significantly enhances the stability of the solution, enabling its use in the QG model for long-term
simulations. The study demonstrates that filtering is crucial for balancing stability and accuracy, particularly
for high-frequency oscillatory systems. This scheme should be positioned after the Forward Euler to highlight
the progression to second-order accuracy and the role of time-filtering in numerical stability.

In contrast to purely numerical methods, Jamal presents an analytical approach based on Lie symmetry
reductions, transforming the QG model’s PDEs into a system of ODEs [8]. Recall the equation 3 for QG
vorticity. Jamal applies the symmetry principles to reduce the PDE to an ODE form:

dϕ

dt
= g(ϕ, t), (8)

where g(ϕ, t) encapsulates simplified dynamics, making the equations computationally less intensive and thus
more efficient to solve.This analytical technique is particularly effective when parameterised for specific QG
model layers, allowing efficient model simplification. This provides a unique contrast to traditional numer-
ical solutions by demonstrating a pathway to reducing computational cost through dimensional reduction,
especially under certain parameter constraints.

Lastly, Oka advocates the fourth-order Runge-Kutta (RK4) method for handling nonlinear dynamics
within the QG model [14]. This is an advanced scheme that effectively balances stability and computational
cost. The approach improves precision by evaluating intermediate steps within each time-step, formulated as:

ϕn+1 = ϕn +
∆t

6
(k1 + 2k2 + 2k3 + k4), (9)

where the intermediate values k1, k2, k3 and k4 are calculated as follows:

k1 = f(ϕn), (10)

k2 = f

(
ϕn +

∆t

2
k1

)
, (11)

k3 = f

(
ϕn +

∆t

2
k2

)
, (12)

k4 = f(ϕn +∆tk3). (13)

By averaging these intermediate slopes, RK4 captures the underlying dynamics with high accuracy, making
it suitable for nonlinear systems with significant variability, such as the QG model. The research also imple-
ments adaptive time-stepping, dynamically adjusting ∆t based on error estimates to enhance computational
efficiency and ensure stability without excessive recalculations. This technique is instrumental for high-
fidelity simulations, particularly in nonlinear advection-diffusion systems, namely fluid dynamics and meteorology.

6

The literature above for solving the QG model highlight a progression from basic first-order methods
to more sophisticated schemes capable of handling complex, nonlinear dynamics. Nonetheless, this research
used the Forward Euler as its temporal numerical scheme since it serves a great benchmark. In addition,
central finite difference was use to discretise the state variables as its approximation assures a second order
error O(h2) compared to first order in forward difference, where h is the interval length between grid cells.
This allows other schemes to easily replace to accommodate different needs of accuracy and stability, if it
is found to be suitable with CGNS (which it is, as discussed in Section 4). It also eases the process of
simulating the model numerically to spare more work on the main focus, data assimilation with CGNS.

2.3 Conditional Gaussian Nonlinear System (CGNS)

The CGNS offers a powerful framework to model complex dynamical systems that exhibit both nonlinear
and non-Gaussian characteristics. In these systems, while the overall dynamics may be highly nonlinear, the
conditional distributions of specific variables retain a Gaussian structure [13, 3]. This property is especially
beneficial for data assimilation, uncertainty quantification and prediction, as it enables closed-form solutions
for conditional mean and covariance, streamlining the analysis and computational tasks with associated with
high-dimensional, nonlinear systems [13].

The framework typically uses two state variables, X (observational) and Y (estimation). It should be
noted that each state variable is defined in multi-dimension (i.e. X ∈ Cn1 and Y ∈ Cn2), as exemplified in
Section 4.1. With such state variables, the general form of the CGNS is expressed as:

dX = [A0(X, t) +A1(X, t)Y] dt+B1(X, t)dW1(t), (14)

dY = [a0(X, t) + a1(X, t)Y] dt+ b2(X, t)dW2(t), (15)

where A0,A1,a0,a1 denote the system matrices that may vary with both X and time t, while diffusion
matrices B1 and b2 incorporate stochasticity through independent Wiener processes W1 and W2 [13, 7].
As signposted by the use of Wiener processes to compute noise, one beneficial property of the system is
its continuity in observing and recovering, unlike traditional data assimilation framework, such as Kalman
filter and Ensemble Kalman filter [17, 10, 6]. This lead to smoother propagation of uncertainties over time,
and ultimately more reliable assimilation outcomes compared to other discrete models with observational
interval.

Another key advantage of the CGNS lies in conditional Gaussian structure, which allows Y, conditioned
on X, to follow a linear Gaussian process. This relationship simplifies the computation of conditional means
(µf) and conditional covariances (Rf), which can be derived using closed-form expressions:

dµf = (a0 + a1µf) dt+ (RfA
∗
1)(B1B

∗
1)
−1 (dX − (A0 +A1µf)dt) , (16)

dRf = [a1Rf +Rfa
∗
1 + b2b

∗
2 − (RfA

∗
1)(B1B

∗
1)
−1(A1Rf)]dt, (17)

where .∗ is the complex conjugate transpose, but this is to be treated as the transpose (.T) in the paper,
as all values are real number. These equations form the basis for optimal filtering within CGNS and enable
efficient, scalable computations in high-dimensional systems, such as oceanographic and atmospheric models.

7

Nevertheless, the most difficult and critical part when implementing the framework involves the derivation
of system matrices, especially A1 and A0, which is responsible for the coupling between observed and
predicted variables. The construction of matrices and their impact on the stability will be among the main
discussion of Section 4.

In addition to the closed filtering equations, CGNS supports optimal smoothing as well with analytical
formulae, which further refines state estimation by incorporating future observations, thus providing a more
accurate estimation of past states. The smoothing extends the filtering process by adjusting the previously
calculated estimates based on subsequent observations, offering improved accuracy in systems with sparse
data or long temporal dependencies, as expressed below.

←
dµs =

(
−a0 − a1µs + (b2b

∗
2)R

−1
f (µf − µs)

)
dt, (18)

←
dRs =

(
−(a1 + (b2b

∗
2)R

−1
f)Rs −Rs(a

∗
1 + (b2b

∗
2)R

−1
f) + b2b

∗
2

)
dt. (19)

Here, the subscript ‘s’ in the conditional mean and conditional covariance abbreviates ‘smoother’. Further-
more, the notation ←. depicts the backward flow at which the system is to be solved as it adjusts the past
prediction based on future observations. Having this opposite direction to the optimal filtering computa-
tionally introduces extra O(Nt), where Nt is the time spanned by the system. Hence, the implementation
of this additional feature should be considered carefully, rather than adopting it by default. In the case of
two-layers QG model, this extra layer was thought to be unnecessary, since the data has low sparsity with
no explicit sign of long temporal dependency.

8

3 Numerical solution of the QG model

Solving the QG model means computing the values of ψ and q for each layer at each time step given the
initial streamline function. To accommodate this, recall the two equations, 3 and 4 below. They must
interact with each other carefully as they both involve parameters with different inherent properties.

∂q

∂t
+
∂ψ

∂x

∂q

∂y
− ∂ψ

∂y

∂q

∂x
= 0 (3)

qi = ∇2ψi + βy +
k2d
2
(ψj − ψi) (4)

Firstly, note that all terms of Equation 3 are partial derivatives in respect to time and both physical di-
mensions. As the simulation is time-dependent by the nature of data assimilation, terms involving ∂t must
exist, which only appears in this first equation. Hence, this equation was deemed to be the main equation
to find the matrices A0, A1, a0 and a1 to perform CGNS filtering. Meanwhile, Equation 4 primarily reflects
the interaction between two layers as the presence of subscripts i and j of ψ naturally suggest. This results
in the entry of the CGNS matrices for each layer to be represented by terms involving the other layer as
section 4 describes in detail.

To test such CGNS framework against a reliable and accurate benchmark, it was necessary to first adopt
the numerical solution of the QG model since analytically solving convoluted trigonometry and derivative
operations for a large matrix size (up to 10000 × 10000 for testing 100 × 100 mesh) with a great number
of time steps (≈ 104) is beyond the available computation power. With computation times being differed
by several orders of magnitude (10 ∼ 1000), the analytical method in MATLAB would take several days to
run the intensive simulations in the paper which was numerically done under 30 minutes. To further ensure
reasonable computation time without sacrificing the validity of the results, both the simulation-specific and
QG model parameters were scaled appropriately, as stated in the tables below.

Name Symbol Order of magnitude or constant value in simulation

Initial Time T0 0s
End time Tf 0.05 ∼ 2s
Timestep dt 10−4s

Mesh grid boundary {(x1, y1), (x2, y2)} {(0, 0), (1, 1)}
Mesh grid dimension Nx ×Ny 50× 50

Interval length between cells h = hx = hy 0.02
Initial streamline function 1 ψt=0

i ψt=0
1 (x, y) = − sin(1.2πx) sin(1.5πy) + 0.6 cos(2.3πx) cos(2.8πy)

(asymmetric sinusoidal) ψt=0
2 (x, y) = sin(3.1πx) sin(0.8πy) + 0.7 cos(1.6πx) cos(2.4πy)

Initial streamline function 2 ψt=0
i ψt=0

1 (x, y) = exp(−(2(x− 1/2)2 + (y − 1/2)2)/(2(1/8)2))
(symmetric Gaussian) ψt=0

2 (x, y) = exp(−((x− 1/2)2 + 4(y − 1/2)2)/(3(1/8)2))
Smoothing kernel dimension n× n 5× 5

Table 2: Table of temporal and spatial parameters of the simulation.

Note that the coefficients of initial streamline functions were randomly chosen. Furthermore, the asym-
metric version was mainly used to generate all the findings to be discussed due to its ability to capture more
realistic, chaotic flow of the particles, while the other was used purely to verify its sanity at the initial stage
of modeling.

9

Name Symbol Order of magnitude or constant value in simulation

Streamline function ψ Heavily depends on the initial streamline function
Potential vorticity q Heavily depends on the initial streamline function
Coriolis parameter f0 10−2s−1

Beta parameter β 10−1m−1s−1

Rossby radius of deformation Ld 50 ∼ 100km
Layer thickness H 100 ∼ 1000m

Buoyancy frequency N 10−4 ∼ 10−3s−1

Square of the deformation wavenumber k2d 10m

Table 3: Table of the QG model parameters used for the simulation

Another factor to consider was a boundary condition that guarantees the stability of cells near the
boundary. For this, doubly periodic boundary condition was deployed in both x and y dimensions with all
the edge cells being fixed to 0 for the sake of simplicity. This meant the independence of 196 (out of 2500)
cells from the specific context of the model, which did not have significant impact on the overall simulation
since the streamline function was intentionally initialised to generate stochastic behaviour in central regions.
The main streamline function clearly outputs 0 as long as one of the dimensions is at 0.

With such parameters, computing qt+1 at the new time step given the data ψt, qt at the previous time
step can be done trivially by rearranging Equation 3.

∂q =

(
∂ψt

∂y

∂qt

∂x
− ∂ψt

∂x

∂qt

∂y

)
∂t (20)

qt+1 = qt + ∂q (21)

It should be noted the PDE above is solved numerically by considering its equivalent ODE through central
finite difference. To precisely describe the discretisation, the following indexing notations are introduced,
which are to be kept constant throughout the paper, unless otherwise specified. The vartik,l

equates to a
value of ith layer of the state variable, var, located in x and y coordinates of k and l of its discretised
mesh, respectively, at time t. If notations on some parameters are skipped, it implies the expression is not
dependent on them.

Hence, the discretisation of Equation 20 is:

qt+1
k,l − qtk,l =

(
ψtk,l+1 − ψtk,l−1

2hy

ψtk+1,l − ψtk−1,l
2hx

−
ψtk+1,l − ψtk−1,l

2hx

ψtk,l+1 − ψtk,l−1
2hy

)
dt

=

(
(ψtk,l+1 − ψtk,l−1)(ψ

t
k+1,l − ψtk−1,l)− (ψtk+1,l − ψtk−1,l)(ψ

t
k,l+1 − ψtk,l−1)

4h

)
dt (22)

Meanwhile, ψn+1 is more challenging to update due to the absence of term ∂ψ
∂t , which emphasises the

importance of the first equation regarding time once again. Hence, Equation 4 was considered the most
convenient to minimise the derivative operations. The solution begins with isolating the ψi terms before
discretising them.

∇2ψi −
k2d
2
ψi = qi − βy − k2d

2
ψj

10

The central finite difference was used to numerically exploit ∇2ψi as mentioned in Section 2.2. The
discretisation at time n then becomes as follows.

ψik+1,l
+ ψik−1,l

+ ψik,l+1
+ ψik,l−1

− 4ψik,l

h2
− k2d

2
ψik,l

= Ck,l

ψik+1,l
+ ψik−1,l

+ ψik,l+1
+ ψik,l−1

+Ωψik,l
= h2Ck,l = C ′k,l

Aψ⃗ = C ′, (23)

where Ω = −(4 +
h2k2d
2) and Ck,l = qik,l

− βY − k2d
2 ψjk,l

.
An example of the scheme with 4 × 4 grid is outlined in Section 8.1. In addition, Algorithm 1 below

provides the pseudo code of numerical solution for the model. It should be highlighted how the matrix
A is invariant since all the coefficients including Ω consist of constants. Such inherent property allows
optimisation of the scheme since the matrix A needs to be computed only once before the program enters
the main time marching loop.

Algorithm 1 Two-layers QG numerical solver ▷ All computations take place for both layers in parallel

Require: {All the parameters in Tables 2 and 3}
init constants, time variables and mesh constraints
init compute the invariant matrix A before time marching
init ψ1 and q1 given the initial ψ
for t = 1 : Nt − 1 do

compute qt+1 by solving Equation 3 with 22
compute ψt+1 by solving Equation 4 with 23

end for
return ψ1:Nt and q1:Nt

11

4 Implementation of the QG DA via CGNS

4.1 Estimating vorticity q given streamline function ψ for both layers

As a stepping stone towards more realistic and complicated cases, the CGNS should first be utilised to
recover one of the key state variables of q given its ψ for both layers. Consequently, the observational data
and posterior data are defined as below.

X =

[
ψ1

ψ2

]
, Y =

[
q1

q2

]
(24)

It is worth noting that each state variable is described in 50× 50 grid, which each grid can be transformed
into matrix (see Equation 25).

X =



ψ11,1 . . . ψ11,50

...
. . .

...
ψ150,1 . . . ψ150,50

ψ21,1 . . . ψ21,50

...
. . .

...
ψ250,1 . . . ψ250,50


, Y =



q11,1 . . . q11,50
...

. . .
...

q150,1 . . . q150,50

q21,1 . . . q21,50
...

. . .
...

q250,1 . . . q250,50


(25)

The indexing should be not be confused with what has been and will be used throughout the paper, since
the above is based on the conventional matrix index, while the custom one that resembles of Cartesian plane
coordinates. In this respect, the operations are mostly done element-wise, except when the entire state has
to interact with the other state, namely A1Y and a1Y . This means a careful consideration ins required when
decomposing the derivative of each state variable in respect to time into (A0 and A1Y) or (a0 and a1Y). It
is clearly more ideal to reduce complexity in the matrix multiplication, although some terms are inevitably
part of it to capture the stochastic influence of Y .

Similar to the direct numerical solution (see Section 3), linearising q (Y) into its matrices is not hard.
Moving the Jacobian term to the other side in Equation 3 yields:

dY = dq = −J(ψ, q)dt

Since the Jacobian only consists of terms that are multiplication of each state variable, there is no independent
term from Y . Hence, the entire expression must be captured under a1Y , despite knowing it is not ideal.
In fact, the discretisation of Jacobian term to separate a1 from a1Y is used repeatedly in this CGNS
implementation (see Section 8.2 for its derivation). This results in:

dY =

[
dq1

dq2

]
=

[[
0

0

]
+

[
−J(ψ1, q1)

−J(ψ2, q2)

]]
dt = [a0 + a1Y] dt

12

Meanwhile, the decomposition of ψ cannot be as easy as directly using 4 in Section 3, since CGNS forces
both variables to be represented in respect to time to obtain a continuously analytical solution. Hence,
Equation 4 must be substituted into Equation 3 as it is the only way to extract a term dψ

dt .

d(∇2ψi + βy +
k2d
2 (ψj − ψi))

dt
= −J(ψi, qi)

Note that values of y-coordinates y is independent of a time, leading to a removal of βy.

d(∇2ψi +
k2d
2 (ψj − ψi))

dt
= −J(ψi, qi)

The issue with the current state of decomposition is that fracdψidt cannot easily be isolated due to the
complexity of reversing ∇2ψi term. At this point, it was realised that shifting the perspective of j introduces
new paradigm as k2d

2 was the only variable linked with ψj .
Hence,

dψj
dt

=
∂
(
ψi − 2

k2d
∇2ψi

)
∂t

− 2

k2d
J(ψi, qi)

This time, the first term is independent of q, and hence, can be represented as A0. Now, all the system
matrices required by CGNS framework is obtained, as represented as below.

dX =

[
dψ1

dψ2

]
=



∂

(
ψ2− 2

k2
d

∇2ψ2

)
∂t

∂

(
ψ1− 2

k2
d

∇2ψ1

)
∂t

+

[
− 2
k2d
J(ψ2, q2)

− 2
k2d
J(ψ1, q1)

] dt = [A0 +A1Y] dt (26)

dY =

[
dq1

dq2

]
=

[[
0

0

]
+

[
−J(ψ1, q1)

−J(ψ2, q2)

]]
dt = [a0 + a1Y] dt (27)

A0 =


∂

(
ψ2− 2

k2
d

∇2ψ2

)
∂t

∂

(
ψ1− 2

k2
d

∇2ψ1

)
∂t

 , A1 = a1

[
0 2

k2d
2
k2d

0

]
(28)

a0 =

[
0

0

]
, a1Y =

[
−J(ψ1, q1)

−J(ψ2, q2)

]
(29)

For the diffusion matrices, B1 and b2 were chosen as constant value with conventional Wiener processes being
W1,W2 = Rand(0, 1)

√
dt for each cells of both layers. The last component to implement was the conditional

covariance matrix Rf .
CY |X = ΣY Y − ΣY XΣ−1XXΣXY

Since there was no known covariance for the arbitrarily created the initial streamline functions, 1% of the
simulation time was dedicated to compute a covariance as well as values of both state variables via the
numerical solution to truly reflect the trend. It is worth noting such technique is widely used at the initial
stage of data assimilation to ensure stability. The Algorithm 2 below demonstrates the entire process.

13

Algorithm 2 Two-layers QG CGNS solver ▷ All computations take place for both layers in parallel

Require: {All the parameters in Tables 2 and 3}
init constants, time variables and mesh constraints
init compute the invariant matrix A before time marching
init ψ1, q1 and µf for both layers given the initial ψ
for t = 1 : Nt

100 − 1 do
compute qt+1 by solving Equation 3 with 22
compute ψt+1 by solving Equation 4 with 23
update Σψ and Σq for Rf

end for
init Rf based on ψ1:

Nt
100 , Σψ, q1:

Nt
100 and Σq

for t = Nt

100 : Nt do
compute observational noise
compute ψt+1 with µtf
find A0, A1, a0 and a1 with Equations 28 and 29
compute µt+1

f via CGNS framework with Equation 16
compute Rt+1

f via CGNS framework with Equation 17
end for

return ψ1:Nt and µ1:Nt

f

4.2 Estimating a second layer given ψ of first layer

Now that the use of CGNS to recover physical properties of two-layers QG model is found to be possible, its
applicability in more realistic setting must be discussed. Only ψ1 is observed now with aim to recover the
attributes of second layer. Since attributes among the same layer can be numerically solved as discussed in
Section 3, the Y of this DA was chosen to be ψ2.

X =
[
ψ1

]
, Y =

[
ψ2

]
(30)

Same approach from 4.1 was naively taken to deconstruct equations into the CGNS framework as follows.

dX =
[
dψ1

]
=

[[
∂

(
ψ2− 2

k2
d

∇2ψ2

)
∂t

]
+
[
− 2
k2d
J(ψ2, q2)

]]
dt = [A0 +A1Y] dt (31)

dY =
[
dψ2

]
=

[[
∂

(
ψ1− 2

k2
d

∇2ψ1

)
∂t

]
+
[
− 2
k2d
J(ψ1, q1)

]]
dt = [a0 + a1Y] dt (32)

A0 =

[
∂

(
ψ2− 2

k2
d

∇2ψ2

)
∂t

]
, A1ψ2 = − 2

k2d
J(ψ2, q2) (33)

a0 =

[
∂

(
ψ1− 2

k2
d

∇2ψ1

)
∂t

]
, a1ψ2 = − 2

k2d
J(ψ1, q1) (34)

However, this derivation was found to be inappropriate in capturing the weak coupling between two layers (see
8.3 for more details). More specifically, it lacks stability when properly discretised (see 8.3), which the form
appears to be extremely convoluted, suggesting the disparity between theory and practicality once again;
The simulation blew up after a certain period of time, although it occurred later for longer time settings.
Since the approach was arguably what was enforced by the physical equations, a different perspective had

14

to be taken that no longer directly revolves around equations 3 and 4.
Hence, the alternative approach was to exploit the numerical scheme as described in Section 3, because

of its well defined discretisation from the analytical solution of the equations. This does not necessarily
mean the compromise of accuracy to enhance stability, because the central finite difference will still generate
approximations with an error term proportional to h2 from the already discretised form, which happens to
take identical value of h.

As stated in Section 3, ψ is updated via 23,

ψik+1,l
+ ψik−1,l

+ ψik,l+1
+ ψik,l−1

+Ωψik,l
= h2Ck,l = C ′k,l

Aψ⃗ = C ′,

where Ω = −(4 +
h2k2d
2), Ck,l = qik,l

− βY − k2d
2 ψjk,l

. From this, the relevant matrices for the CGNS can be
constructed as follows.
Let dψ1 = ψt+1

1 − ψt1 at time t.
Then, terms of ψ1 at each timestep can be expressed as:

ψt+1
1 = A−1h2C (35)

= h2A−1
(
qt+1
1 − βY − k2d

2
ψt2

)
(36)

ψt1 = A−1h2C (37)

= h2A−1
(
qt1 − βY − k2d

2
ψt−12

)
(38)

Substitute them into dψ = ψt+1 − ψt:

dψ1 = h2A−1
(
qt+1
1 − βY − k2d

2
ψt2

)
− h2A−1

(
qt1 − βY − k2d

2
ψt−12

)
= h2A−1

(
qt+1
1 − qt1 −

k2d
2
(ψt2 − ψt−12)

)
This now captures the dynamics of ψ1 in the alternative approach. For ψ2, it was necessary to make
dψ2 = ψt2 − ψt−12 , because qt+1

2 is required to be able to use ψt+1
2 , which is not computed at the start.

Decrementing a timestep by one also intuitively makes sense since utilising qt+1
2 based on the assumption

that ψt+1
2 is found, but the goal of this CGNS is to recover ψt+1

2 .

dψ2 = h2A−1
(
qt2 − βY − k2d

2
ψt−11

)
− h2A−1

(
qt−12 − βY − k2d

2
ψt−21

)
= h2A−1

(
qt2 − qt−12 − k2d

2
(ψt−11 − ψt−21)

)

15

Using the above definitions of dψ1 and dψ2, the system matrices can be computed.

dX =
[
dψ1

]
=
[[

1
dt · h

2A−1
(
qt+1
1 − qt1 +

k2d
2 ψ

t−1
2

)]
+
[

1
dt · −

h2k2d
2 A−1ψt2

]]
dt = [A0 +A1Y] dt (39)

dY =
[
dψ2

]
=

[
1

dt
· h2A−1

(
qt2 − qt−12 − k2d

2
(ψt−11 − ψt−21)

)]
dt = [a0 + a1Y] dt (40)

A0 =
[

1
dt · h

2A−1
(
qt+1
1 − qt1 +

k2d
2 ψ

t−1
2

)]
, A1 =

1

dt
· −h

2k2d
2

A−1 (41)

a0 =
[

1
dt · h

2A−1
(
qt2 − qt−12 − k2d

2 (ψt−11 − ψt−21)
)]
, a1 = 0 (42)

It should be noted that the ψ2 terms that are computed at previous timesteps, and therefore considered to
be known, is independent of ψt2. This allows the previously predicted values to be a part of observation,
which leads a1 to be empty matrix. This interestingly depicts the recovery of posterior mean is completely
independent of the observations of ψ2 itself, which equates to the full dependence of other variables. Such
property corroborates to the strong coupling between state variables, fulfilling the motivation to alter the
native approach. The pseudo code for this algorithm is provided below.

Algorithm 3 Two-layers QG CGNS advanced solver

Require: {All the parameters in Tables 2 and 3}
init constants, time variables and mesh constraints
init compute the invariant matrix A before time marching
init ψ1, q1 and µf for both layers given the initial ψ
for t = 1 : Nt

100 − 1 do
compute qt+1 by solving Equation 3 with 22
compute ψt+1 by solving Equation 4 with 23
update Σψ and Σq for Rf

end for
init Rf based on ψ1:

Nt
100 , Σψ, q1:

Nt
100 and Σq

for t = Nt

100 : Nt do
compute observational noise
compute ψt+1

2 with µtf
compute qt+1

1 and qt+1
2 based on ψt+1

find A0, A1, a0 and a1 with Equations 28 and 29
compute µt+1

f via CGNS framework with Equation 41
compute Rt+1

f via CGNS framework with Equation 42
end for

return ψ1:Nt
2 and µ1:Nt

f

16

5 Simulation Results

There were 3 type of simulations for each initial streamline functions (sinusoidal and Gaussian in Table 2.
Firstly, CGNS framework that observes both layers of QG model in Section 4.1 was simulated along with
the numerical solution in Section 3, by following Algorithms 2 and 1, respectively. Similarly, the DA for
recovering the second layer given only the first layer (4.2) was simulated with Algorithm 3. Finally, the
recovered attributes were used to interpolate the trajectories of particles.

The processor which ran the simulation was Intel i3-8130U CPU with 8GB RAM. All the artefacts,
including the MATLAB code, simulation videos and pefromance evaluation, can be found on the Github repository
[19]. Below is a snippet of the simulation.

Figure 2: Simulation of true and recovered q at t = 1.98 with sinusoidal streamline function

Figure 3: Simulation of true and recovered q at t = 1.98 with Gaussian streamline function

17

https://github.com/geun-yun/Quasi_geostrophic_model_for_LEMDA/tree/main

Figure 4: Simulation of true and recovered ψ2 at t = 1.98 with sinusoidal streamline function

Figure 5: Simulation of true and recovered ψ2 at t = 0.98 with Gaussian streamline function

Figure 6: Simulation of particle tracing of two-layers QG model at t = 1.98 with sinusoidal streamline
function

Figure 7: Simulation of particle tracing of two-layers QG model at t = 1.98 with Gaussian streamline function

Note that the absurd looking jump of particles in Figure 6 is a result of doubly periodic boundary
condition fully trapping all particles inside the grid. It is also worth noting the sparsity of recovery via
Algorithm 3 is much higher than that of Algorithm 2.

18

6 Evaluation of the DA

To evaluate the performance of the main algorithm (3), grid search method was used across the dimensions
of mesh ({10×10, 30×30, 50×50}) and number of timesteps ({500, 1000, 3000, 5000, 10000, 15000, 20000}).

Root mean squared error (RMSE) and pattern correlation (Corr) were used as two path-wise metrics.
Both metrics are one of the most common ways to compare the posterior mean and truth as given below.
RMSE indicates the average deviation between the simulated state and the true state. Meanwhile, Corr
highlights how well the spatial pattern of the simulation aligns with the reference model.

Let µ and x be vectors for posterior mean and truth, respectively with a population of P . Then,

RMSE =

√∑P
i=1(µi − xi)2

P

 /std(x) (43)

Corr =

∑P
i=1

(
(µi − mean(µ))(xi − mean(x))

)√∑P
i=1(µi − mean(µ))2

√∑P
i=1(xi − mean(x))2

(44)

The RMSE is always non-negative, with lower RMSE values indicating a more accurate posterior mean
estimate. Since the RMSE in Equation 43 is normalised by the standard deviation of the true data, an
RMSE above 1 implies that the error in the posterior mean estimate exceeds the mean variation in the true
data. Pattern correlation ranges from -1 to 1, where higher values denote greater similarity between the two
profiles. Typically, a reliable estimate achieves a pattern correlation above 0.5.

Figure 8 illustrates the results of RMSE, Corr and computation time as plots. The normalised com-
putation time refers to actual computation time divided by Nt × N2

x to depict the time complexity of the
algorithm, which is often hard to be captured in the original time plot, especially with only 3 coordinates for
each line. Therefore, the linearity in normalised graph apart from Nt = 500 indicates the time complexity
of O(Nt × N2

x), which follows from a Nx × Ny (where Nx = Ny) matrix performing operations iteratively
over Nt times. This can be further corroborated by comparing the raw computation time across different
Nt when Nx is fixed to 50. For example, Nt = 5000 and Nt = 10000 in such settings lasted about 400
and 800 seconds, respectively, which is proportional to the ratio between the Nts. Similarly, Nt = 20000

indeed ran for 1800 seconds, which is roughly quadruple and double of the other two settings, respectively.
Furthermore, it can be seen that the most involved simulation approximately took 30 minutes under an
average or below-average computational resources, suggesting a low demand of such operations.

Meanwhile, the RMSE metric, plotted on a logarithmic x-axis for clarity, effectively captures the algo-
rithm’s performance across timesteps Nt and grid sizes Nx. Notably, RMSE values decrease steadily as
Nt increases, showing that the error between the posterior mean estimate and the true state reduces over
time. This decline in RMSE appears to converge toward a value around 0.1, irrespective of the grid size.
This convergence suggests that the DA algorithm achieves a consistent level of accuracy over time, largely
independent of spatial resolution. In other words, as the time marching scheme progresses, the DA frame-
work consistently refines its estimates, reinforcing its robustness across varying spatial scales. This outcome
highlights one of DA’s primary strengths: its adaptability and effectiveness in multiscale settings, where it
can achieve reliable accuracy regardless of spatial granularity.

19

(a) Normalised Computation Time
(b) Computation Time (seconds)

(c) Normalised RMSE (d) Pattern Correlation

Figure 8: Performance evaluation of two-layer QG model simulation via CGNS

The Corr metric exhibits a general upward trend with respect to the number of timesteps across different
grid sizes, indicating improved alignment between the model estimate and the true state as the assimilation
process advances. However, the influence of Nx on Corr is significant. Larger grid sizes consistently yield
higher Corr values, showing that higher spatial resolution enables the algorithm to better capture the pattern
of the true state. For example, Corr is maximised at 0.92 for Nx = 50, while Nx = 10 can go as high as 0.64.
Interestingly, Corr values show diminishing returns after Nt = 3000, where further increases in Nt contribute
less to improving Corr across all Nx. This plateau suggests that while finer temporal resolution continues
to provide marginal benefits, the spatial resolution ultimately becomes a limiting factor in the Corr metric’s
growth. This outcome implies that the data assimilation (DA) framework is particularly sensitive to spatial
granularity, meaning that for more detailed alignment with the true state pattern, a sufficiently high grid
resolution Nx is essential.

Overall, the evaluation indicates the DA of two-layers QG model via CGNS have performed well with
decreasing and increasing trends of RMSE and Corr with Nt and Nx as a major influence, respectively.

20

7 Conclusion

This study has introduced an adaptation of the Lagrangian-Eulerian Multiscale Data Assimilation (LEMDA)
framework to the physical domain, utilising a two-layer quasi-geostrophic (QG) model and Conditional
Gaussian Nonlinear System (CGNS) to provide a robust approach for data assimilation. The results have
illustrated that this framework, through CGNS, can successfully maintain low RMSE values over time, inde-
pendent of grid scale, and achieve consistent alignment with the true state across various spatial resolutions.
The pattern correlation analysis underscores the framework’s adaptability in multiscale applications, al-
though sensitivity to spatial resolution also reveals that further benefits depend heavily on grid granularity.
This adaptability and the model’s demonstrated scalability establish a solid foundation for further explo-
ration of advanced capabilities within this framework. Nonetheless, several promising avenues for future
research arise from the findings of this study as follows.

Leveraging neural networks (NN) on a cell-by-cell basis represents a key pathway toward parallelising
the computational processes inherent in the LEMDA framework. This approach could allow each cell in the
spatial grid to independently perform the required assimilation steps, which would not only expedite the
data assimilation process but also maximise computational efficiency on parallel computing architectures
[15]. Neural networks, due to their inherently parallel structure, are well-suited for such spatially distributed
tasks.

An intriguing extension of this research involves exploring whether the fundamental states variables can
be accurately recovered solely by observing particle displacements. Current methods primarily rely on direct
observations of ψ and q, but a system where only particle trajectories are observed could offer a more
feasible setup in real-world applications. This approach would require developing advanced interpolation
and estimation techniques, possibly with support from neural network-based inference, to reconstruct field
states from sparse data.

Establishing rigorous analytical conditions for the convergence of the two-layer QG CGNS solver is
essential for ensuring stability across various parameter settings. Such conditions would enable precise control
over model parameters and provide clear boundaries within which the solver maintains both accuracy and
stability. It would serve as critical tools for designing and fine-tuning the DA process, allowing researchers
to optimize computational resources without compromising the fidelity of the posterior mean estimate [11].

Extending the two-layer QG model to support more layers offers the potential for modelling more complex
systems that may involve vertical stratification, such as those found in oceanographic and atmospheric
flows [16]. Each additional layer would introduce unique challenges related to inter-layer coupling and the
propagation of uncertainties through the model, thus necessitating a refined data assimilation framework.
However, using the two-layer model as an inductive step offers a scalable approach to incrementally increasing
model complexity.

To conclude, this paper has laid the groundwork for further innovations in data assimilation by adapt-
ing the LEMDA framework to the physical domain and establishing a scalable, multiscale approach using
CGNS within a two-layer QG model. These prospective research directions are instrumental in addressing
real-world computational and observational challenges, with applications extending to fields requiring high-
fidelity multiscale modelling. With these advances, LEMDA could evolve into a more versatile and powerful
framework, capable of integrating complex, multi-layer, and observation-constrained environments.

21

8 Supporting Information

8.1 4× 4 grid discretisation for ψ update

Recall Equation 23, Aψ⃗ = C ′. The vector will be in a form of

ψ⃗ =



ψ0,0

ψ0,1

...
ψ0,Ny

ψ1,0

...
ψ1,Ny

...
ψNx,Ny


Col index j = 0, . . . , (Nx + 1)(Ny + 1) of A denotes the coefficient of the jth corresponding ψ from ψ⃗.
Row index i = 0, . . . , (Nx+1)(Ny +1) of A represents the equation at k = ⌊ i

Nx+1⌋ and l = i mod (Ny +1).
As an example, let Nx, Ny = 3, meaning a 4 by 4 grid with both horizontal and vertical indexes from 0 to 3.
Then,

Aψ⃗ =



Ω 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0

1 Ω 1 0 0 1 0 0 0 0 0 0 0 1 0 0

0 1 Ω 1 0 0 1 0 0 0 0 0 0 0 1 0

1 0 1 Ω 0 0 0 1 0 0 0 0 0 0 0 1

1 0 0 0 Ω 1 0 1 1 0 0 0 0 0 0 0

0 1 0 0 1 Ω 1 0 0 1 0 0 0 0 0 0

0 0 1 0 0 1 Ω 1 0 0 1 0 0 0 0 0

0 0 0 1 1 0 1 Ω 0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0 Ω 1 0 1 1 0 0 0

0 0 0 0 0 1 0 0 1 Ω 1 0 0 1 0 0

0 0 0 0 0 0 1 0 0 1 Ω 1 0 0 1 0

0 0 0 0 0 0 0 1 1 0 1 Ω 0 0 0 1

1 0 0 0 0 0 0 0 1 0 0 0 Ω 1 0 1

0 1 0 0 0 0 0 0 0 1 0 0 1 Ω 1 0

0 0 1 0 0 0 0 0 0 0 1 0 0 1 Ω 1

0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 Ω





ψ0,0

ψ0,1

ψ0,2

ψ0,3

ψ1,0

ψ1,1

ψ1,2

ψ1,3

ψ2,0

ψ2,1

ψ2,2

ψ2,3

ψ3,0

ψ3,1

ψ3,2

ψ3,3



= C ′

For the sake of readability, ψk−1,l and ψk+1,l were coloured as light red and red, respectively, while ψk,l−1 and
ψk,l+1 were coloured as light blue and blue, respectively. The vector ψ⃗ would then be solved by computing
A−1C ′.

22

8.2 Derivation of a1 from a1ψ = −J(ψ, q)

Same indexing scheme was used as 8.1, to express interaction of each cell against every other cells. This
results in a1 with a size of 2500× 2500 matrix for a 50× 50 mesh.
The discretisation uses central finite difference as follows.

a1ψ =
dψ

dy

dq

dx
− dψ

dx

dq

y

=
ψk,l+1 − ψk,l−1

2hy

qk+1,l − qk−1,l
2hx

− ψk+1,l − ψk−1,l
2hx

qk,l+1 − qk,l−1
2hy

=
(ψk,l+1 − ψk,l−1)(qk+1,l − qk−1,l)− (ψk+1,l − ψk−1,l)(qk,l+1 − qk,l−1)

4h2

Now consider a n-th cell of a grid, which would be in n-th row of a1 when vectorised. The columns at the
row will now be

qk+1,l − qk−1,l,

qk−1,l − qk+1,l,

qk,l−1 − qk,l+1,

qk,l+1 − qk,l−1,

for positions of ψk,l+1, ψk,l−1, ψk+1,l, ψk−1,l, respectively. As a final note, the matrix should be divided by
4h2 element-wise. Such construction of a1 ensures a1ψ = −J(ψ, q).

8.3 Derivation of A1 and a1 CGNS matrices for recovering the second layer
given the first layer

Recall the setting in Section 4.2
∂
(
ψ2 − 2

k2d
∇2ψ2

)
∂t

− 2

k2d
J(ψ2, q2)

X =
[
ψ1

]
, Y =

[
ψ2

]

dX =
[
dψ1

]
=

[[
∂

(
ψ2− 2

k2
d

∇2ψ2

)
∂t

]
+
[
− 2
k2d
J(ψ2, q2)

]]
dt = [A0 +A1Y] dt

dY =
[
dψ2

]
=

[[
∂

(
ψ1− 2

k2
d

∇2ψ1

)
∂t

]
+
[
− 2
k2d
J(ψ1, q1)

]]
dt = [a0 + a1Y] dt

A0 =

[
∂

(
ψ2− 2

k2
d

∇2ψ2

)
∂t

]
, A1ψ2 = − 2

k2d
J(ψ2, q2)

a0 =

[
∂

(
ψ1− 2

k2
d

∇2ψ1

)
∂t

]
, a1ψ2 = − 2

k2d
J(ψ1, q1)

23

For the sake of readability, let u, d, r, l represents immediately above, below, right, left coordinates of a
current coordinate (i, j), denoting (i, j+1), (i, j−1), (i+1, j), (i−1, j), respectively. Assuming equal spacing
in x and y dimensions, where h = dx = dy,

J(ψ2, q2) =
∂ψ2

∂x

∂q2
y

− ∂ψ2

∂y

∂q2
∂x

=
ψ2r − ψ2l

2dx

q2u − q2d
2dy

− ψ2u − ψ2d

2dy

q2r − q2l
2dx

=
1

4h2
((q2u − q2d)ψ2r + (q2d − q2u)ψ2l + (q2l − q2r)ψ2u + (q2r − q2l)ψ2d)

This discretisation computes A1. However, a careful approach must be taken for a1 since the vector ψ⃗2 does
not directly appear on the RHS of Jacobian with ψ1 and q1.
Hence, Equation 4 was rearranged in terms of ψ2 and substituted for a1ψ2 = − 2

k2d
J(ψ1, q1) to be valid.

q2 = ∇2ψ2 + βy +
k2d
2
(ψ1 − ψ2)

ψ1 =
2

k2d
(q2 −∇2ψ2 − βy) + ψ2

More coordinates notations are used, where uu, ur, ul, dr, dl, dd, rr, ll represents (i, j + 2), (i+ 1, j + 1), (i−
1, j + 1), (i+ 1, j − 1), (i− 1, j − 1), (i, j − 2), (i+ 2, j), (i− 2, j) given a current coordinate of (i, j).

J(ψ1, q1) = J

(
2

k2d
(q2 −∇2ψ2 − βy) + ψ2, q1

)

=
∂
(

2
k2d
(q2 −∇2ψ2 − βy) + ψ2

)
∂x

∂q1
∂y

−
∂
(

2
k2d
(q2 −∇2ψ2 − βy) + ψ2

)
∂y

∂q1
∂x

Discretise the first term and generalise it to the second term.

∂
(

2
k2d
(q2 −∇2ψ2 − βy) + ψ2

)
∂x

∂q1
∂y

=

2
k2d
(q2r − q2l − (∇2ψ2r −∇2ψ2l)) + ψ2r − ψ2l

2dx

q1u − q1d
2dy

=

2
k2d

(
q2r − q2l −

(
ψ2ur+ψ2dr

+ψ2rr+ψ2(i,j)
−4ψ2r

h2 −
ψ2ul

+ψ2dl
+ψ2(i,j)

+ψ2ll
−4ψ2l

h2

))
+ ψ2r − ψ2l

2dx

q1u − q1d
2dy

=

2
k2d

(
q2r − q2l −

(
ψ2ur+ψ2dr

+ψ2rr−4ψ2r−ψ2ul
−ψ2dl

−ψ2ll
+4ψ2l

h2

))
+ ψ2r − ψ2l

2dx

q1u − q1d
2dy

=

(2
k2d
(q2r − q2l)

2dx
−

2
k2dh

2 (ψ2ur + ψ2dr + ψ2rr − 4ψ2r − ψ2ul
− ψ2dl − ψ2ll + 4ψ2l) + ψ2r − ψ2l

2dx

)
q1u − q1d

2dy

=

2
k2d
(q2r − q2l)(q1u − q1d)

4h2
−

2(q1u − q1d)

4k2dh
4

(
ψ2ur

+ ψ2dr + ψ2rr + ((
k2dh

2

2
− 4)ψ2r − ψ2ul

− ψ2dl − ψ2ll + (((4− k2dh
2

2
)ψ2l

)

24

Hence, the second term can be computed as follows.

∂
(

2
k2d
(q2 −∇2ψ2 − βy) + ψ2

)
∂y

∂q1
∂x

=

2
k2d
(q2u − q2d − (∇2ψ2u −∇2ψ2d)− 2βdy) + ψ2u − ψ2d

2dy

q1r − q1l
2dx

=

2
k2d

(
q2u − q2d −

(
ψ2uu+ψ2(i,j)

+ψ2ur+ψ2ul
−4ψ2u

h2 −
ψ2(i,j)

+ψ2dd
+ψ2dr

+ψ2dl
−4ψ2d

h2

)
− 2βdy

)
+ ψ2u − ψ2d

2dy

q1r − q1l
2dx

=

2
k2d

(
q2u − q2d −

(
ψ2uu+ψ2ur+ψ2ul

−4ψ2u−ψ2dd
−ψ2dr

−ψ2dl
+4ψ2d

h2

)
− 2βdy

)
+ ψ2u − ψ2d

2dy

q1r − q1l
2dx

=

(2
k2d
(q2u − q2d − 2βdy)

2dy
−

2
k2dh

2

(
ψ2uu + ψ2ur + ψ2ul

− 4ψ2u − ψ2dd − ψ2dr − ψ2dl + 4ψ2dh
2
)
+ ψ2u − ψ2d

2dy

)
q1r − q1l

2dx

=

2
k2d
(q2u − q2d − 2βh)(q1r − q1l)

4h2
−

(q1r − q1l)
2

k2dh
2

(
ψ2uu

+ ψ2ur
+ ψ2ul

+ ((
k2dh

2

2 − 4)ψ2u − ψ2dd − ψ2dr − ψ2dl + (((4− k2dh
2

2)ψ2d

)
4h2

=

2
k2d
(q2u − q2d − 2βh)(q1r − q1l)

4h2
−

2(q1r − q1l)

4k2dh
4

(
ψ2uu

+ ψ2ur
+ ψ2ul

+ ((
k2dh

2

2
− 4)ψ2u − ψ2dd − ψ2dr − ψ2dl + (((4− k2dh

2

2
)ψ2d

)
This finally produces the entire Jacobian term.

J(ψ1, q1) =
∂
(

2
k2d
(q2 −∇2ψ2 − βy) + ψ2

)
∂x

∂q1
∂y

−
∂
(

2
k2d
(q2 −∇2ψ2 − βy) + ψ2

)
∂y

∂q1
∂x

=

2
k2d
(q2r − q2l)(q1u − q1d)

4h2
−

2
k2d
(q2u − q2d − 2βh)(q1r − q1l)

4h2
−

2(q1u − q1d)

4k2dh
4

(
ψ2ur

+ ψ2dr + ψ2rr + ((
k2dh

2

2
− 4)ψ2r − ψ2ul

− ψ2dl − ψ2ll + (((4− k2dh
2

2
)ψ2l

)
+

2(q1r − q1l)

4k2dh
4

(
ψ2uu + ψ2ur + ψ2ul

+ ((
k2dh

2

2
− 4)ψ2u − ψ2dd − ψ2dr − ψ2dl + (((4− k2dh

2

2
)ψ2d

)
=

1

2k2dh
2

[
(q2r − q2l)(q1u − q1d)− (q2u − q2d − 2βh)(q1r − q1l)−

(q1u − q1d)

h2

(
ψ2ur + ψ2dr + ψ2rr + ((

k2dh
2

2
− 4)ψ2r − ψ2ul

− ψ2dl − ψ2ll + (((4− k2dh
2

2
)ψ2l

)
+

(q1r − q1l)

h2

(
ψ2uu + ψ2ur + ψ2ul

+ ((
k2dh

2

2
− 4)ψ2u − ψ2dd − ψ2dr − ψ2dl + (((4− k2dh

2

2
)ψ2d

)]

25

Similarly, the below working discretises by replacing q1 of the Jacobian with its corresponding equation.

J(ψ1, q1) = J

(
ψ1,∇2ψ1 + βy +

k2d
2
(ψ2 − ψ1)

)

=
∂ψ1

∂x

∂
(
∇2ψ1 + βy +

k2d
2 (ψ2 − ψ1)

)
∂y

− ∂ψ1

∂y

∂
(
∇2ψ1 + βy +

k2d
2 (ψ2 − ψ1)

)
∂x

The first term:

∂ψ1

∂x

∂
(
∇2ψ1 + βy +

k2d
2 (ψ2 − ψ1)

)
∂y

=
ψ1r − ψ1l

2dx

ψ1uu+ψ1ur+ψ1ul
−4ψ1u−ψ1dd

−ψ1dr
−ψ1dl

+4ψ1d

h2 + 2βdy +
k2d
2 (ψ2u − ψ2d − ψ1u + ψ1d)

2dy

=
ψ1r − ψ1l

2dx

ψ1uu+ψ1ur+ψ1ul
−4ψ1u−ψ1dd

−ψ1dr
−ψ1dl

+4ψ1d

h2 + 2βdy +
k2d
2 (−ψ1u + ψ1d)

2dy
+

k2d(ψ1r − ψ1l)

8dxdy
(ψ2u − ψ2d)

The second term:

∂ψ1

∂y

∂
(
∇2ψ1 + βy +

k2d
2 (ψ2 − ψ1)

)
∂x

=
ψ1u − ψ1d

2dy

ψ1ur+ψ1dr
+ψ1rr−4ψ1r−ψ1ul

−ψ1dl
−ψ1ll

+4ψ1l

h2 +
k2d
2 (ψ2r − ψ2l − ψ1r + ψ1l)

2dx

=
ψ1u − ψ1d

2dy

ψ1ur+ψ1dr
+ψ1rr−4ψ1r−ψ1ul

−ψ1dl
−ψ1ll

+4ψ1l

h2 +
k2d
2 (−ψ1r + ψ1l)

2dx
+

k2d(ψ1u − ψ1d)

8dxdy
(ψ2r − ψ2l)

Finally, the Jacobian term:

J(ψ1, q1) =
∂ψ1

∂x

∂
(
∇2ψ1 + βy +

k2d
2 (ψ2 − ψ1)

)
∂y

− ∂ψ1

∂y

∂
(
∇2ψ1 + βy +

k2d
2 (ψ2 − ψ1)

)
∂x

=
ψ1r − ψ1l

2dx

ψ1uu+ψ1ur+ψ1ul
−4ψ1u−ψ1dd

−ψ1dr
−ψ1dl

+4ψ1d

h2 + 2βdy +
k2d
2 (−ψ1u + ψ1d)

2dy
−

ψ1u − ψ1d

2dy

ψ1ur+ψ1dr
+ψ1rr−4ψ1r−ψ1ul

−ψ1dl
−ψ1ll

+4ψ1l

h2 +
k2d
2 (−ψ1r + ψ1l)

2dx
+

k2d(ψ1r − ψ1l)

8dxdy
(ψ2u − ψ2d)−

k2d(ψ1u − ψ1d)

8dxdy
(ψ2r − ψ2l)

For both approaches, the constant term was taken out to be a part of corresponding A0 or a0 as they
were independent of Y = ψ2.

26

References

[1] Peter Bauer, Alan Thorpe, and Gilbert Brunet. The quiet revolution of numerical weather prediction.
Nature, 525(7567):47–55, 2015.

[2] Jean-Paul Chehab and Maithem Trabelsi Moalla. Numerical simulations of a 2d quasi geostrophic
equation, 2010.

[3] Nan Chen, Yingda Li, and Honghu Liu. Conditional gaussian nonlinear system: A fast preconditioner
and a cheap surrogate model for complex nonlinear systems. Chaos: An Interdisciplinary Journal of
Nonlinear Science, 32(5):053122, May 2022. Part of the Focus Issue on Theory-informed and Data-driven
Approaches to Advance Climate Sciences.

[4] H.C. Davies and H. Wernli. Quasi-geostrophic theory. In James R. Holton, editor, Encyclopedia of
Atmospheric Sciences, pages 1787–1794. Academic Press, Oxford, 2003.

[5] Quanling Deng, Nan Chen, Samuel Stechmann, and Jiuhua Hu. Lemda: A lagrangian-eulerian multiscale
data assimilation framework, 2024.

[6] Geir Evensen. Data assimilation: The ensemble kalman filter. Springer Science and Business Media,
2009.

[7] Daniel T. Gillespie. 3 - continuous markov processes. In Daniel T. Gillespie, editor, Markov Processes,
pages 111–219. Academic Press, San Diego, 1992.

[8] S. Jamal. Solutions of quasi-geostrophic turbulence in multi-layered configurations. pages 207–216, Wits
2001, South Africa, 2010. axiv.

[9] Heiner Kornich, S Wahl, and S Basu. Dynamic downscaling of atmospheric fields for mesoscales and
sub-mesoscales. Journal of Geophysical Research: Atmospheres, 113:D07108, 2008.

[10] J. N. Kutz. Amath 563 inferring structure of complex systems: Data assimilation. https://faculty.
washington.edu/kutz/am563/page1/page6/am563.html, 2016.

[11] Andrew J Majda and John Harlim. A new perspective on multiscale geophysical data assimilation.
SIAM Review, 54(2):377–418, 2012.

[12] HT. Tachim Medjo. Numerical simulations of a two-layer quasi-geostrophic equation of the ocean. In
SIAM Journal on Numerical Analysis, 2000, vol 37, pages 2005–2022. Society for Industrial and Applied
Mathematics, 2000.

[13] Chen Nan. Stochastic Methods for Modeling and Predicting Complex Dynamical Systems. Springer,
2023.

[14] Eiichi Oka. Nonlinear solutions to a two-layer quasi-geostrophic model of the gulf streamt, December
1989.

[15] Jaideep Pathak, Zhixin Lu, Brian Hunt, Michelle Girvan, and Edward Ott. Using machine learning
to augment coarse-grid computational fluid dynamics simulations. Journal of Computational Physics,
375:973–991, 2018.

27

https://faculty.washington.edu/kutz/am563/page1/page6/am563.html
https://faculty.washington.edu/kutz/am563/page1/page6/am563.html

[16] Joseph Pedlosky. Geophysical fluid dynamics. Springer Science and Business Media, 1987.

[17] M Roth, G Hendeby, and C et al Fritsche. The ensemble kalman filter: a signal processing perspective.
EURASIP Journal on Advances in Signal Processing, 2017.

[18] Geoffrey K. Vallis. Atmospheric and Oceanic Fluid Dynamics. Second Edition. Cambridge University
Press, 2017.

[19] Geun Yun. Quasi_geostrophic_model_for_lemda. https://github.com/geun-yun/Quasi_geostrophic_
model_for_LEMDA/tree/main, 2024.

28

https://github.com/geun-yun/Quasi_geostrophic_model_for_LEMDA/tree/main
https://github.com/geun-yun/Quasi_geostrophic_model_for_LEMDA/tree/main

	Introduction
	Background
	Two-layers Quasi-geostrophic (QG) model
	Numerical schemes
	Conditional Gaussian Nonlinear System (CGNS)

	Numerical solution of the QG model
	Implementation of the QG DA via CGNS
	Estimating vorticity q given streamline function for both layers
	Estimating a second layer given of first layer

	Simulation Results
	Evaluation of the DA
	Conclusion
	Supporting Information
	44 grid discretisation for update
	Derivation of a1 from a1= -J(, q)
	Derivation of A1 and a1 CGNS matrices for recovering the second layer given the first layer

