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The Lagrangian-Eulerian Multiscale Data Assimilation (LEMDA) Framework

®) Eulerian Description

Large-Scale Features:

: What is data assimilation?
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Rigorous Derivation
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ABSTRACT

This research aims to further investigate the process of LEMDA by replacing the Fourier space with the
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physical domain. Such change in the perspective of domain introduces the advantages of being able

to deal in non-periodic system and more intuitive representation of localised phenomena or time-

dependent problems. The context of the domain for this paper was set as sea ice floe trajectories to

recover the streamline function (¥) and potential vorticity (q) in the Arctic regions, which led the model

to be derived from two-layer Quasi geostrophic (QG) model. The numerical solution to this model

utilises the Conditional Gaussian Nonlinear System (CGNS) to accommodate the inherent non-linearity

and continuity in analytical manner. The root mean square error (RMSE) and pattern correlation (Corr)

are used to evaluate the performance of the recovered posterior mean of the model. The result

corroborates the effectiveness of exploiting the two-layer QG model in physical domain.

Benchmarking (compared against analytic solution)

Algorithm 1 Two-layers QG numerical solver
> All computations take place for both layers

Require: {All the parameters}
init constants, time variables and mesh constraints
init compute the invariant matrix A before time marching
init ¢! and ¢! given the initial 1)
fort=1:N:—1do
compute ¢''! by solving Equation 3
compute ! by solving Equation 4
end for
return 5Nt and gtV

The Data Assimilation Model

Algorithm 2 Two-layers QG CGNS solver
> All computations take place for both layers

Require: {All the parameters}

init constants, time variables and mesh constraints
init compute the invariant matrix A before time marching
init ¢', ¢' and p; for both layers given the initial 1)
fnrtzl:%—ldn

compute ¢'t! by solving Equation 3

compute ! by solving Equation 4

update X7) and q for Ry

end for N N
init Rf based on T Yah, gl too and Mg
for t = &t - N, do

100
compute observational noise

compute **! via equation 2 with %
find Ay, A1, ap and a; by using both Equations 3 and 4
compute ,u;jpl ' via CGNS framework

end for

return 'Vt and ;L}:N"*

ANALYSIS
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MAIN EQUATIONS

CGNS Framework
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Two-layer QG Model
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The performance of DA via CGNS was great

overall, as the RMSE ranged from 0 to 0.4 and §\

pattern correlation ranged within 0.99x.

SO, WHAT'S NEXT?

Residual difference fromt=0~2s

q1 difference at t=1.9200
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e Neural Network on each cell to achieve accelerated parallel computation

e Recovery of W and g from solely observing the displacement of particles

« Find of analytical convergence condition of Two-layers QG CGNS Solver

Use of Two-layer QG model as an inductive step for more layers




