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Theorem provers are important tools for people working in formal verification. There are a myriad of interactive systems available
today, with varying features and approaches motivating their development. These design choices impact their usability, alongside
the problem domain in which they are employed. We test-drive two such provers — Coq and Idris2 — by proving the correctness of
insertion sort, before providing a qualitative evaluation of their performance. We then compare their community and library support.
This work helps users to make an informed choice of system, and highlight approaches in other systems that developers might find
useful.
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1 Introduction

The field of theorem proving systems seems to be at a turning point, with the role of a prover undergoing an evolution
from a mere assistant to a necessity. Distinguished Mathematics Professor Kontorovich mentions this in their foreword
to the Experimental Mathematics’ Special Issue on Interactive Theorem Provers [10], positing that in the near future
highly regarded journals will only accept proofs formalized in theorem proving systems. Going further, Kontorovich
states that this is not as radical as it may seem since similar transitions have occurred: there was a point in the 19th
century when it became required for calculus research papers to present proofs in Cauchy’s 𝜖/𝛿 formalism. The necessity
of theorem proving systems is further underscored by Nawaz et al. [13], who points to incidents such the 2009 crash of
Air France Flight 447 (228 deaths), the 2009 Washington Metro collision (80 severe injuries, 9 deaths); and the infamous
Therac 25 incidents, resulting in several peoples’ deaths. These incidents all arose from faulty software and could have
been avoided if these systems were validated mathematically; demonstrating why formalisation with theorem provers
are a necessity for mission critical systems [13]. Consequently, the importance of mathematical formalization within
the literature justifies a broader understanding of the state of the theorem proving landscape. Comparison studies,
especially those focusing on novel theorem proving systems, can adequately provide this within the literature. We make
a specific contribution to this domain through comparing the interactive provers Coq and Idris2 for their approach
through a user-experience lens.

2 Background

2.1 The provers

Coq, first released in 1989, is an interactive theorem prover (ITP) built upon the Calculus of Inductive Constructions
[8], a constructive type system, and developed in OCaml. The prover allows users to state theorems and software
specifications and then interactively develop formal proofs of these theorems through tactics. Generated proofs are
machine-checked by a certification kernel to verify the validity of the developed proof. Some notable uses of Coq
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include the development of CompCert, a formally-verified optimizing compiler for C99 [11], as well as a proof of the
four colour theorem [6].

Released in 2020, Idris2 is a relatively new purely functional programming language descended from Idris/Idris1
(initial release 2007) with first class dependent types [3]. In contrast to Coq, it is primarily designed as a general-purpose
programming language rather than as a dedicated theorem prover. Like Coq, Idris2 uses a constructive logic [14],
but with extensions from quantitative type theory that allow the user to specify when a function can run, not just a
function’s intended, proven purpose. The utility of this is immediately apparent, with the developers giving the example
of guaranteeing an ATM only dispenses cash at most once per card insertion [3].

2.2 Related work

There is no shortage of research comparing theorem provers on the attributes and features associated with them. Many
of these are in-depth with expansive investigation such as [16], which offers a fifteen-way comparison of industrial-
strength mathematical provers, aiming to demonstrate the variety of approaches available for the problem of formalizing
mathematics. These studies tend to focus on the size of the standard library, the strength of their logic, and the level of
automation that each system offers. [16] was a companion paper to [17], which compiled proofs of the irrationality of
√
2 in a superset of these provers as a means of direct comparison. The latter paper’s focus was on the appearance of

proof formalization results, rather than on the formalization experience of users. Other papers, such as [13], do not
test-drive the provers and instead rely on surveys from developers and online benchmarks to draw their conclusions,
although these are fewer in number.

However, there is a shortage of research comparing novel theorem provers. This shortage is especially evident for
newer systems. Examples include [18], [19], and [9], which all evaluate and compare Coq and Isabelle/HOL –– the
regularity of this topic is emblematic of a common trend within the theorem proving comparison literature. Interestingly,
this disparity seems to occur independently of the market share of a theorem proving system as for instance Lean
— the theorem prover of choice for many studies aiming to formalize mathematical concepts — seems to have very
little coverage in terms of studies directly comparing it to other theorem provers. This is because many of the in-depth
studies tend to focus on popular and more well-established theorem provers such as Coq or Isabelle/HOL — provers that
were released over thirty years ago. As a result, there is a distinct scarcity of literature that compares newer systems
such as Idris2 against these well-established theorem provers. Moreover, papers may be rendered obsolete due to their
age and subsequent development of the examined systems.

As much as this could be justified by how novel these theorem provers are, it is worrying that, in many cases, there
is little literature comparing these theorem provers at all. As a result, it is difficult to ascertain the true dimensions of
the current theorem proving landscape in terms of what options exist, the power of these options as well as the features
that they offer. Zammit mentions this in their comparison of Coq and HOL [19], stating that many users of theorem
provers lack the perspective of knowing more than one such system, justifying this by stating that becoming proficient
with a theorem proving system is a time-consuming task. Going further Zammit argues that comparison studies which
compare a user’s preferred theorem prover with others concretes their understanding of the system they are familiar
with whilst providing them better perspective about others. Hence, these types of studies form an important portion of
the literature and can be informative in terms of how one is to go about proving the correctness of a given algorithm.
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3 Comparing the provers

3.1 Installing the provers

The experience of setting up the provers varied greatly between the systems. Coq provides pre-built binaries for all
operating systems, alongside package offerings for the main Linux package managers, while Idris2 requires compilation
from source. We downloaded Coq from archlinux-community and interacted with the system through the VSCoq
extension for VS Code1. Proof General2 or CoqIDE3 are more commonly used than VSCoq according to a 2022 community
survey [4], however we chose the alternate tooling to better reflect how a new user, coming from Haskell, might start
learning the system.

Idris2 notionally supports all major operating systems, requiring either Chez Scheme or Racket in order to bootstrap
Idris2, withWindows additionally requiringMSYS2 to simulate a unix-like environment.Whenwe attempted installation
on Windows, we ran into difficulties with Chez Scheme’s path involving spaces which could not be resolved even
after help from the language’s community forums. We eventually switched to installing the system via WSL, which
required only a single make command after downloading the source. Like Coq, we used a VSCode extension4 to install
the language server protocol for quality-of-life improvements.

3.2 Proof writing

To provide a benchmark by which to compare the experience, we showed the correctness of polymorphic insertion sort
in each prover using multisets. In Haskell:

insert :: Ord a => a -> [a] -> [a]

insert i [] = []

insert i (x : xs) = if i <= x then (i : x : xs) else (x : insert i xs)

sort :: Ord a => [a] -> [a]

sort [] = []

sort (x : xs) = insert x (sort xs)

To do this, we require a predicate sorted, defined inductively as follows:

sorted [] (1)

∀𝑛, (sorted [n]) (2)

∀𝑚𝑛𝑝, (leq 𝑛𝑚 → sorted (𝑚 : 𝑝) → sorted (𝑛 :𝑚 : 𝑝)) (3)

alongside a total ordering leq and a function to return the contents of a list,

contents : list 𝐴 → multiset 𝐴.

Multisets 𝐴 and 𝐵 are considered equal if and only if the multiplicities of all elements in 𝐴 and 𝐵 are the same.

1https://github.com/coq-community/vscoq
2https://proofgeneral.github.io/
3https://opam.ocaml.org/packages/coqide/
4https://github.com/bamboo/idris2-lsp-vscode

https://github.com/coq-community/vscoq
https://proofgeneral.github.io/
https://opam.ocaml.org/packages/coqide/
https://github.com/bamboo/idris2-lsp-vscode
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We need to prove three lemmas (explicitly or otherwise):

∀𝑥 : 𝐴, 𝑙 : list 𝐴, (contents (insert 𝑥 𝑙) = contents (𝑥 : 𝑙)) (4)

∀𝑥 : 𝐴, 𝑙 : list 𝐴, (sorted 𝑙 → sorted (insert 𝑥 𝑙)) (5)

∀𝑙 : list 𝐴, (contents 𝑙 = contents (sort 𝑙)) (6)

In order to prove the main theorem:

∀𝑙 : list 𝐴, (contents 𝑙 = contents (sort 𝑙) ∧ sorted (sort 𝑙)) .

We were permitted to use the standard libraries of each language as required. The proofs can be be found at
https://github.com/HarrisonOates/COMP2560-Theorem-Prover-Code and we refer to them throughout this section.

3.2.1 Defining functions The Haskell specification translates to each language relatively easily, with some language
specific quirks.

Inductive sorted : list A -> Prop :=

| sorted_nil : sorted []

| sorted_singleton : forall n, sorted [n]

| sorted_cons : forall n m p, leq n m -> sorted (m :: p) -> sorted (n :: m :: p).

The Coq specification for sorted uses the type Prop of propositions, but if-statements require a statement of type
bool. The types are not interchangeable because booleans are guaranteed to be decidable while propositions are not, so
this necessitated a decidability hypothesis leq_dec. Hypotheses for the transitivity and totality of leq also need to be
specified:

Hypothesis leq_dec : forall a b, {leq a b} + {~ leq a b}.

Hypothesis leq_trans : forall a b c, leq a b -> leq b c -> leq a c.

Hypothesis leq_total : forall a b, ~ leq a b -> leq b a.

Hence leq_dec is used to write insertion sort:

Fixpoint insert (i : A) (l : list A) :=

match l with

| [] => [i]

| x :: xs => if leq_dec i x then (i :: x :: xs) else (x :: insert i xs)

end.

Fixpoint sort (l : list A) : list A :=

match l with

| [] => []

| x :: xs => insert x (sort xs)

end.

When a program invokes the created proof for an arbitrary type, the user will need to provide an implementation of
leq for that type and a proof that the stated hypotheses are satisfied.

https://github.com/HarrisonOates/COMP2560-Theorem-Prover-Code


Theorem Provers: One Size Fits All? 5

Unlike Coq, in Idris2 there is no dedicated terminology for different parts of the proof, such as Inductive, Hypothesis
and Fixpoint, as they are all defined as their own functions. Each proposition is constructed as types to form functions,
as can be seen in type IsSorted that defines the sorted predicate.

data IsSorted : (xs:Vect n e) -> Type where

IsSortedZero :

IsSorted Nil

IsSortedOne :

Ord e =>

(x:e) ->

IsSorted (x::Nil)

IsSortedMany :

Ord e =>

(x:e) -> (y:e) -> (ys:Vect n'' e) -> -- (n'' == (n - 2))

(IsLte x y) -> IsSorted (y::ys) ->

IsSorted (x::(y::ys))

With this implementation, any Vect in IsSorted type now guarantees that it is sorted in non-decreasing order. This
type is then used in process of deriving and proving the predicates of insert. It should also be noted that the data type
as a whole is used to define the function but its specific cases, such as IsSortedZero and IsSortedOne, are utilized for
the implementation.

insert :

Ord e =>

(xs:Vect n e) -> (y:e) -> (IsSorted xs) ->

(xs':(Vect (S n) e) ** ((IsSorted xs'), (ElemsAreSame (y::xs) xs')))

insert Nil y IsSortedZero =

([y] ** (IsSortedOne y, XsIsXs [y]))

insert (x::xs) y proofXXsIsSorted =

let proofHeadOfXXsIsX = the (HeadIs (x::xs) x) MkHeadIs in

case (insert' (x::xs) y proofXXsIsSorted proofHeadOfXXsIsX) of

(xs' ** (proofXsNewIsSorted, proofHeadXsNewIsXOrY, proofYXXsIsXsNew)) =>

(xs' ** (proofXsNewIsSorted, proofYXXsIsXsNew))

A quirk of the implementation is that the proof uses the Vect type rather than List, which seems counterintuitive.
Vect, as the type of “lists with length” [15] was chosen for the implementation over List based on an experienced user
suggestion. We note that Data.Vect provides fromList and Foldable provides toList, which both preserve ordering
of the elements. Accordingly, List is also supported by this implementation. In the REPL, this detail is unimportant
(because the size of the list is known at runtime) and sort can be directly applied without repercussions.

Such types can be used as a part of theorems, asking for the proof for its property in order for the theorems (functions)
to be compiled, as can be seen in the main theorem insertionSort (lines 180-185). This idea of having ‘propositions as
types’ provides a unified approach between computational and proof-oriented constructs [2]. In other words, there are
no specific terminologies insinuating the purpose of functions like variable and Hypothesis, nor requiring separate
variables like Prop for “things to be proven" and bool for “things to be computed", in contrast to Coq.
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Specifying sort from the Haskell definition was trivial in Coq, with a clear correspondence between the two functions
(lines 36-46). Idris2, however, builds the proof directly into the function, so the relation between our Haskell sort and
Idris2’ insertionSort (lines 182-195) is less clear. This represents a major difference in philosophy: In Coq, the user
creates the function and then proves its properties, while Idris2 creates and proves a function correct simultaneously.

3.2.2 Interacting with the engine The main way of manipulating the proof state in Coq is through tactics, which
constitute steps in the proof. Each tactic is stepped through and checked by the kernel in real time, throwing an error
in the IDE if it is not a valid application of a tactic. Coq also accepts inserting proof terms into the system directly in a
manner similar to Idris2, which we discuss below. This offers finer-grained control for users that desire it.

Idris1 used to have tactics in a similar vein to Coq [15]. The majority of tactics were deprecated during the transition
to Idris2, as this version focused on providing a more minimal core for better efficiency and dependability. Nevertheless,
due to the Curry-Howard Correspondence, the following relationships between proof system and Idris2’s computation
model can be established [5]:

• Propositions in Logic corresponds to Type in Idris2
• Proofs in Logic corresponds to Terms/Programs in Idris2
• Simplification of proofs in Logic corresponds to evaluation of program/normalisation of proofs in Idris2

In summary, Idris2 accepts an implementation of function to be a valid proof, where the function is the theorem
consisting of propositions expressed as types, if it compiles without any holes. Holes (LHS = ?{hole_name}) are
unwritten right hand sides of proofs that can be revised later when writing functions incrementally.

3.2.3 Recovery and Maintainability Recovery refers to the ability to change approach while writing a proof. Both Coq
and Idris2 have features that facilitate recovery as many ‘interactive’ theorem provers innately do. Coq can undo a
tactic or series of tactics by stepping backwards through proof state, so navigating to an earlier instance of the current
proof is simple. If the user wishes to add a theorem above the current proof, the system allows for their proof to be
temporarily omitted with the Admitted command. This accepts the stated proposition as an axiom, with the intention
that the user returns to implement the proof later, similar to holes in Idris2. In a similar manner, using helper functions
in Idris2 allows for incremental changes so logical or syntactic errors can be isolated to each function. The REPL helps
facilitate this process by catching errors at compile time.

Maintainability is facilitated by both systems in the form of proof searches. In Idris2, this occurs through the REPL
command :ps n f or simply hovering the cursor on the hole, which searches for a proof to fill hole f at line n. The
example below clearly demonstrates how the right hand side of insertionSort’s base case can be immediately filled
with help from such interactive feature:

186 insertionSort Nil = ?insertionSort_rhs_0

-- (terminal command)

InsertionSort> :ps 186 insertionSort_rhs_0

([] ** (IsSortedZero, NilIsNil))

Coq takes a slightly different approach to search, instead specifying the ‘shape’ of a theorem as a line in the proof:

Search (_ + _ <= _ + _).

(* Results in a list of all imported theorems that match the shape, e.g *)

Plus.plus_le_compat_r_stt: forall n m p : nat, n <= m -> n + p <= m + p
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Nat.crossmul_le_addsquare:

forall a b : nat, 0 <= a -> 0 <= b -> b * a + a * b <= a * a + b * b

Coq’s approach has the advantage of the user not needing to change to change keyboard focus in order to find their
results. Search in both systems helps the user to use previous results, thereby avoiding duplication of code.

3.3 Running programs

The method by which to compile and run programs varies across the systems. Within a proof session, Coq can evaluate
terms, printing an output when the checker steps over the step:

Definition simpleReverseList := rev [1;2;3].

Eval compute in simpleReverseList. (* = [3;2;1] : list nat *)

Needless to say, this isn’t particularly useful. Instead, programs written in Coq can be ‘extracted’ to Haskell, OCaml, or
Scheme, allowing the user to compile and run it in their preferred language. This is natively supported through the
Extraction keyword. Proofs of the correctness of this process are discussed in [12].

This conversion does not come without its disadvantages. When we ran small-scale benchmarks of the extracted
Haskell for a list of Ints, the extracted version took 23% more time and 13% more memory than our hand-written
insertion sort for a 1000-element reversed order list, with the performance penalty decreasing to 9.2% more time and
7% more memory for a 10000-element list. The conversion did not use native Haskell types, instead creating its own
List type, and required instantiation of leq_dec and type A before it would run. While there exist techniques for
using native types at time of extraction to improve performance, such as extracting nat to Int, the size of Int is finite.
Accordingly, using this technique there exist theorems that can be proven in Coq that would not hold in the resulting
Haskell extraction [1], impacting guarantees of correctness.

This additional layer of complexity makes running extracted Coq programs efficently a more involved process than
Idris2, which can compile from source to an executable without additional steps. The snippet below corroborates the
easiness to run the final insertionSort that guarantees the propert of sorted and preserves the contents:

insertionSort :

Ord e =>

(xs:Vect n e) ->

(xs':Vect n e ** (IsSorted xs', ElemsAreSame xs xs'))

-- (terminal command)

InsertionSort> insertionSort [2,1,3]

([1, 2, 3] ** (sorted proof, contents proof (too long to be displayed)))

Such readiness to be computed is thought to be a significant advantage for programmers who require proof of their
executable functions’ properties. One very important aspect of Idris2 during run time is the Quantitative Type Theory
(QTT) [3]. Every single variable in Idris2 has one of three quantities that corresponds to the number of its usage at
run time, which are either 0, 1 or unrestricted. Having the quantity as 0, also known as erasure, brings preciseness
to examining which values are relevant at run time, and which are compile time only. Some of the common erasure
variables are type of element e and size of Vect n, as they are only needed to initialize function properties at compile
time. The linearity with quantity of 1 indicates that a variable must be used exactly once, whether the type variable is
pattern matched or the function variable is applied. Although not compulsory, users can inspect the condition of holes
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easier by explicitly specifying such quantity. Exploitation of the QTT also improves performance as irrelevant variables
at run time are automatically handled.

3.3.1 Termination Consider the following non-terminating Haskell program:

endless :: Int -> Int

endless x = endless (x + 1)

This will compile and run fine. Writing an equivalent program in Coq, however, and we run into trouble. Coq requires a
proof of termination for each defined function. In the case of Coq, if this is not provided the totality checker will throw
an error. Furthermore, the proof can be found automatically through Program Fixpoint in some instances, otherwise
the prover will help the user to prove the termination obligation using a strictly decreasing measure. Idris2, on the
other hand, does not require termination by default, and will readily accept the above program unless the flag --total
is passed to the interpreter. Each function can also go under totality checking with :total {function}. By not forcing
termination, Idris2 users can sacrifice correctness to write functions where termination would not be desirable, such as
the main loop of a web server. This is a clear benefit over Coq, which would require non-terminating code to be written
in the target extraction language.

3.4 Community/Library Support

Community support for a theorem prover is important, as it is the community that develops many of the systems’
libraries and help new users get up to speed with the system. As the exact size of a community is difficult to ascertain
and are spread across many online spaces, we use research mentions according to the ACM digital library5 and the
number of GitHub contributors as a proxy. Since Idris2 is a relatively new system, “Idris" was searched instead. Using
“Idris2" as a keyword results in 3 papers.

We summarize these findings in Table 1 below. Coq has the clear advantage in terms of both GitHub contributors
and amount of related research, with the amount of related research for Idris2 being significantly smaller. This is
unsurprising, considering Coq has well over thirty years of continuous use and development behind it. The number of
GitHub contributors for Coq, nearly six times more than Idris2, further highlights its sizable community.

Table 1. Dedicated communities and their sizes as at October 13, 2023

Prover Github Contributors Related Research count

Coq 230 2345
Idris2 40 439 (3)

In order to take advantage of the community, a theorem prover needs substantive, easy-to-use libraries. Coq’s official
package index formalizes a myriad of mathematics for use by other projects, easily accessible through OPAM [8]. Idris2
has a package manager in development [7] and a canonical list of current libraries on their Github page, but this does
not yet match Coq in expansiveness or ease of use. This issue will lessen with time.

4 Future work

There are a number of potential avenues for future investigation. First, expanding the methodology of this paper
to other theorem provers such as Isabelle, Lean or HOL4 would help to build a more comprehensive survey of the
5dl.acm.org

dl.acm.org
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current theorem-proving landscape. This would build directly upon this paper’s dual contributions, both expanding
information for users to make an informed choice of system and highlighting features that developers might find useful
in maintaining their current system. Second, we propose an in-depth comparison of what is achievable in terms of
program performance once proofs are compiled. This could be further extended to compare the specific mechanisms
behind each theorem prover’s compiler. Motivated by our initial benchmarks of code generated by Coq extraction,
we finally suggest investigating optimization methods to prepare Coq programs for extraction while maintaining
correctness. Reducing the performance penalty of verified code would be a significant contribution because it makes
the adoption of formal methods more palatable to industry, which in turn would improve safety in critical systems.

5 Conclusion

In conclusion, we have shown that Coq and Idris2 each have their own distinguishing features that makes them more
suited towards specific proof styles. We provide a summary in Table 2.

Table 2. Overall comparison between the theorem provers

Factor Coq Idris2

Installation Diffi-
culty

Simple - binary + source available Linux: easy, Windows: much harder

Maintainability Strong type checkingwith some inferencing
ability, offers search capabilities

Strong type checking allows safer
incremental changes with assist from
holes

Interactiveness
with prover

Tactic-based manipulation with option for
proof-term manipulation

Proof-term manipulation with many features
to assist a user from adding clauses, case split-
ting to proof searching

Readability Reads like pen + paper proofs. Haskell-like
syntax

Very readable to those who have experience
with Haskell, but does not resemble a tradi-
tional proof

Ideal scenario Users wanting to take advantage of signif-
icant library + community support and a
more conventional style of proof

If a user desires executable code and is famil-
iar with functional programming
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