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Abstract

Machine learning models are increasingly applied in clinical and biomedical settings, due
to their ability to capture an intricate underlying structure, yet their complexity can ob-
scure critical insights and risk propagating biases that disproportionately affect vulner-
able populations. Hence, this thesis introduces SHIELD: A SHapley and Information-
theory based framework for Equitable Learning via Dissimilar feature grouping, which
combines dissimilarity-driven feature grouping with interpretable latent representations
to mitigate proxy bias and enhance equitable learning of the resulting model. By con-
structing a dissimilarity matrix based on conditional mutual information (CMI), features
are grouped to weaken correlations that might encode sensitive attributes, reducing re-
dundant signals that may contribute to unfairness. This automated approach is more
efficient than clustering similar features and fixing problematic groups post-hoc. Group-
specific autoencoders learn latent representations that summarise each group’s unique
information while preserving a decoder-weight mapping back to the original features.
This enables precise SHapley Additive exPlanations (SHAP) value decomposition, lead-
ing to interpretable feature-level attributions despite dimensionality reduction. Experi-
ments on four benchmark clinical datasets demonstrated that the proposed grouping ap-
proaches, greedy, Bicriterion, and K-plus anticlustering, achieved notable improvements
in fairness metrics and produced more evenly distributed feature importance compared
to raw features and traditional baselines. This was evident as grouping on average led
to0 9.47% improvement in the distance from origin of bias quadrant, which accounts for
both explanation and prediction bias. In addition, the fairness overview score, which
considers other typical fairness metrics as well, was improved by 2.42% when grouped
by dissimilarity. While a modest reduction of 3.43% in accuracy and 5.16% in F1-score
was observed, it remained within acceptable limits for clinical applications, demonstrat-
ing the feasibility of this fairness-performance trade-off. Overall, SHIELD provides a
principled framework that integrates dissimilarity-based grouping, latent representation
learning, and explanation-level auditing to promote equitable and explainable machine
learning for health informatics.

Keywords: Machine learning, Feature grouping, Conditional mutual information, SHAP,
Equitable learning, Health informatics, Explainable Al, Evaluation study
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Chapter 1

Introduction

1.1 Motivation

Artificial Intelligence (AI) and Machine Learning (ML) systems are increasingly de-
ployed in healthcare to assist with diagnosis, triage, and treatment planning. These
settings are high-stakes, since model outputs can directly affect patient outcomes and
resource allocation. When the reasoning behind a model’s prediction is opaque, clin-
icians may be unable to verify or contest its recommendations, and patients may lose
trust in automated systems. Failures in transparency have already been shown to exac-
erbate disparities. For example, some models were found to allocate fewer resources to
patients with minority demographics or some risk prediction tools were systematically
underestimating risk for disadvantaged groups [94, 10]. Recent editorials in Journal of
the American Medical Informatics Association (JAMIA) further emphasised that ex-
plainability in clinical ML should be judged not only by interpretability and fidelity but
also by clinical value [14, 118]. This means explanations must not only be understand-
able by human and faithful to the model, but also genuinely support safe and effective
care. Even interpretable and faithful explanations can undermine clinical decisions, if
the quality of the model systematically differs across patient groups in ways unrelated
to the clinical condition. Hence, equity must be promoted along with transparency to
make explanations consistently reliable and trustworthy.

Beyond these concerns, the nature of clinical tabular datasets further compounds the
problem. Many outcomes of clinical interest are genuinely rare in the population, and
minority subpopulations can be underrepresented due to access barriers, resulting in
highly imbalanced class distributions [102, 56]. Data are also often incomplete because
tests are only ordered when clinically indicated, and electronic health records are prone to
missingness from documentation or system fragmentation. Moreover, structured records
combine heterogeneous variables, such as lab tests, demographics, comorbidities, that
differ in scale, prevalence, and reliability [45]. This combination of imbalance, sparsity,
and heterogeneity makes clinical ML more error-prone, and disparities in data coverage
or quality can directly lead to disparities in care. These challenges corroborate the
significance of developing methods that not only maintain predictive accuracy but also
yield equitable and trustworthy explanations, so that models remain reliable despite the
non-trivial nature of datasets.
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Methodologically, several challenges limit current practice of applying ML explainability
and fairness methods in clinical setting. Firstly, many structured clinical datasets contain
correlated or proxy features [82]. A correlated feature is one that shares statistical
dependence with others, while a proxy feature indirectly encodes sensitive information
(e.g. postcode as a proxy for socioeconomic status). A supervised training without
fairness constraints often drives models to rely heavily on a few dominant predictors
[94, 47]. This can mask the contribution of weaker but clinically meaningful features.
When sensitive attributes or their proxies are correlated with these dominant predictors,
the model may effectively learn to use the sensitive attribute indirectly. In such cases,
differences in outcomes arise from non-clinical factors rather than genuine variation
in disease risk. Moreover, post-hoc explanations attribute high importance to these
dominant features, making inequity appear justified and thereby amplifying it [36, 60].

Secondly, explanation methods (hereafter, ‘explainers’), such as Local Interpretable
Model-Agnostic Explanations (LIME) [95] and SHapley Additive exPlanations (SHAP)
[74], are widely used to attribute predictions to features. LIME perturbs inputs to learn
a simple local surrogate, and SHAP quantifies each feature’s contribution to a prediction
using principles from cooperative game theory. However, these popular explainers typi-
cally assume approximate feature independence, which refers to the idea that predictor
variables (columns) can be treated as if they were statistically independent. This is
not to be confused with the Independent and Identically Distributed (i.i.d) assumption
about independent instances across patients (rows). This assumption rarely holds in
clinical data, where lab measures, comorbidities, and demographic factors can be in-
terdependent. Violations can misallocate credit across correlated variables, producing
inconsistent or misleading explanation attributions [126, 60]. In practice, this makes
explanations difficult to trust, especially when they inform fairness audits [1, 126, 60].

Lastly, fairer outcomes should not be achieved at the cost of interpretability and explain-
ability. While it is possible to intervene the training process to recover a fairer outcome
in cases where models do not achieve parity across groups, many of the approaches mod-
ify the learning objective or incorporate adversarial components in latent representations
that clinicians cannot understand [124, 63]. Yet, it is the variables like lab results, vital
signs, and demographic characteristics that clinicians must see to validate and act on a
model’s behaviour. Hence, a modular equitable approach should preserves explanations
in the native feature space to make it clinically usable.

In summary, these clinical and methodological concerns form a virtuous circle. Bet-
ter methods can make explanations more trustworthy and equitable, which in turn
builds confidence in applying the model to clinical settings, which then motivates further
methodological refinements. Figure 1.1 illustrates how this thesis sits at the intersec-
tion of Information theory, feature grouping, SHAP-based explainability, and equitable
learning to foster this circle. Building on this intersection, the thesis proposes SHIELD:
A SHapley and Information-theoretic framework for Equitable Learning via
Dissimilar feature grouping. The aim is to redistribute model reliance more equi-
tably across features, and yield more reliable explanations under feature dependence,
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thereby improving parity in both what and why the model predicts, while monitoring
predictive performance to ensure that gains in fairness and explainability do not come
at unacceptable cost.

Information Theory
(M1, CMI)

Explainability Feature
(SHAP) grouping

Equitable learning/
Fairness

Figure 1.1: Venn diagram of research areas to identify the gap that is aimed to be filled
by this thesis.

1.2 Research questions and expectations

The motivation above naturally led the author to ponder the following questions. First,
does grouping redistribute SHAP attributions, which quantify how much each feature
contributes to a model prediction, towards a more balanced profile? Does this redistri-
bution lead to fairer outcomes across protected groups (i.e. cohorts defined by sensitive
attributes such as sex, ethnicity, or age) [3, 56]7 Second, how consistent are these
effects across different tabular datasets, feature grouping methods, and model classes
[20, 23, 29]? Third, does grouping remain effective under the challenging conditions of
clinical data, such as limited sample sizes, missingness, heterogeneous variables, and im-
balanced outcomes, where common metrics like accuracy can be misleading [102, 94]?

Finally, all the motivations and questions above can converge to a single research ques-
tion that this thesis aims to address: “Can grouping mutually dissimilar features improve
equitable learning in clinical prediction without unacceptably degrading predictive per-
formance?” This question intertwines four distinct concepts, which are feature grouping,
dissimilarity, equitable learning, and performance, where each must be further unpacked.
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It should also be noted that the theoretical and methodological details of the descrip-
tions below are captured in other chapters of the thesis, as summarised at the end of
this section.

Feature grouping, in the context of this research, refers to partitioning the raw predictor
set into non-overlapping subsets that serve as primitive units for subsequent representa-
tion learning. Unlike conventional cluster analysis, which aggregates highly correlated
variables to exploit redundancy, the proposed anticlustering framework deliberately as-
sembles variables that share little conditional mutual information [104]. The intent is
to prevent proxy variables for protected attributes from reinforcing one another once
they are projected into latent space. By distributing near-duplicates and/or socio-
demographic surrogates across different partitions, the learnt embeddings are encour-
aged to equitably weight features which a model’s decision boundary might otherwise
be dominated by a few features.

Dissimilar features are defined through the complement of conditional mutual informa-
tion given the outcome label. Two predictors are therefore deemed dissimilar if they
convey largely independent information, after conditioning on the clinical endpoint or
target label, measured in terms of entropy. This definition is more strict than mere use
of marginal correlation. It isolates redundancy that is predictably relevant, ensuring
that each partition captures a unique axis of clinical signal rather than residual noise.
The underlying hypothesis is that such controlled heterogeneity acts as an implicit reg-
ularisation, suppressing spurious pathways that have historically channelled bias into
automated decision systems [10, 36].

Equitable learning is the primary constraint this thesis aims to satisfy. Hence, it is
operationalised in Section 2.2, where the author formalise outcomes and explanation
parity and the metrics used throughout.

Performance refers to how well a model predicts in practice. This thesis uses standard
classification metrics that clinicians and ML researchers use too, which are accuracy,
precision, recall and F1 [93, 102, 94], with F1 being especially insightful for imbalanced
datasets. In addition, robustness is assessed by repeating cross-validation with different
random seeds and monitoring the spread of results. Throughout the study, any gains in
fairness or explainability are acceptable only if they do not cause a clinically significant
reduction in performance. In this trade-off, sensitivity of the model must be checked
with extra caution in settings where false negatives (missed diagnosis) carry substantial
clinical risk [56, 94].

The expectation from this investigation is that structured use of feature information can
redistribute feature contribution away from a few dominant ones, yield more balanced
SHAP profiles, and reduce disparities between protected groups, while preserving com-
petitive predictive accuracy. A secondary expectation is that these benefits will depend
on the combination of dataset characteristics, grouping strategy and learner type. They
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are anticipated to be most visible when data are scarce or imbalanced, and broadly con-
sistent across model classes, provided the explanation pipeline remains faithful to the
original clinical variables.

1.3 Contributions

This thesis advances equitable and explainable machine learning by introducing a group-
ing framework that redistributes model reliance across features while preserving inter-
pretability in the original feature space, and by coupling attribution analysis with fairness
auditing. The main contributions are as follows.

First, a dissimilarity-based grouping pipeline is proposed in which input features are
partitioned by conditional dissimilarity and encoded to a compact latent representation,
then mapped back to the original feature space through decoder weights for explanation.
This decoder-mapped step allows the computation of SHAP attributions on the latent
units and rigorously decompose them into per-feature contributions, so explanations
remain expressed in the clinical variables used by practitioners. The design is agnostic
to the downstream learner and accommodates multiple grouping strategies, including
bicriterion and K-plus anticlustering.

Second, a joint audit of outcomes and explanations is developed through the bias-
quadrant visualisation and its summary metrics. Prediction bias is plotted on the vertical
axis and explanation bias (differences in SHAP by protected attribute) on the horizontal
axis, enabling a single-view diagnosis of “what” the model predicts and “why”. This is
complemented with the average distance from the origin as a bias-magnitude indicator
and an aggregated Fairness Overview score that blends outcome and explanation parity,
providing a compact, generalisable comparator.

Third, a cross-dataset, cross-model empirical study is conducted to isolate the effect
of grouping. Five widely used learners, Logistic Regression, Support Vector Machine
(SVM), Multi-Layer Perceptron (MLP), Random Forest and XGBoost (see Section 4.5.1),
are evaluated on four healthcare datasets plus an imbalanced obesity variant. For each
configuration, this thesis reports global and per-instance SHAP summaries, fairness
metrics, and bias-quadrants, using a consistent background and fixed-index protocol
so grouped and ungrouped analyses are directly comparable.

Fourth, instance-level explainability is extended with diagnostics that summarise how
much of a single prediction is carried by the most influential features. This visualisation
is paired with a stacked-bar summary of the total absolute attribution and its decom-
position into the top nine contributors and the remainder, offering a concise measure of
dominance versus dispersion that mirrors the global SHAP effects.

Fifth, evidence-based guidance is provided on when and how to group. Across tasks,
grouping flattens attribution spectra and often improves fairness, with the strongest
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gains in smaller datasets and under class imbalance. Bicriterion emerges as the most
reliable method overall, K-plus is competitive when reducing bias magnitude, Random is
variable, and Greedy rarely justifies its extra cost. These regularities give practitioners
actionable defaults and caveats for fairness-critical applications.

Finally, the thesis assembles a modular, reproducible workflow that integrates grouping,
decoding, SHAP computation, fairness assessment, and visual reporting. This end-to-
end design allows future work to swap encoders, grouping objectives, or learners without
altering the explanation or auditing stages. This sets the stage for the theoretical and
instance-level extensions outlined in the Future works (Chapter 6).

The rest of this thesis is organised as follows. Chapter 2 provides the background,
introducing the general machine learning pipeline, the distinction between equity and
fairness, explainable AT methods with emphasis on SHAP, relevant Information theory
principles, and domain knowledge for the datasets. Chapter 3 reviews related work
across three intersections: SHAP with Information theory, grouping-based feature selec-
tion, and fairness metrics. Chapter 4 presents the methodology, including data collec-
tion, preprocessing, feature grouping by conditional dissimilarity, model training, and
evaluation protocols. Chapter 5 reports results and discussion, covering preprocessing,
grouping analysis, tuned hyperparameters, model performance, SHAP and fairness met-
rics, and clinical implications, followed by limitations. As mentioned, Chapter 6 outlines
directions for future work, such as theoretical validation, instance-level extensions, and
regression tasks. Finally, Chapter 7 concludes the thesis with a summary of contributions
and implications for equitable and explainable clinical ML.



Chapter 2

Background

2.1 General machine learning pipeline

A ML study, particularly one applied in critical fields such as healthcare, must pro-
ceed through a disciplined sequence of stages. Each stage carries distinct assumptions,
potential failure modes, and best-practice safeguards that, if neglected, can undermine
the reliability of the entire process and lead to serious consequences. Broadly, an ML
pipeline can be conceptualised in five core stages: data collection and preprocessing,
feature engineering and selection, model training, model evaluation, and model inter-
pretation. Methodological errors at any stage may propagate downstream, leading to
biased, misleading, or clinically unsafe outcomes [41, 66, 117].

The quality of an ML model is intrinsically linked to the quality of its data. Preprocessing
transforms raw data into a trainable and analysable form, which typically involves the
handling of missing values, normalisation of continuous variables, encoding of categorical
features, and mitigation of class imbalance [69]. In healthcare, where data are often
heterogeneous and noisy, ranging from clinical notes to sensor measurements, robust
preprocessing is particularly important. Failure to do so can introduce systematic biases
or amplify artefacts, thereby compromising downstream predictive accuracy [79].

Feature engineering creates informative representations of raw variables, while feature
selection identifies the most relevant predictors for the task at hand. These steps re-
duce dimensionality, mitigate overfitting, and enhance computational efficiency [53]. In
medical datasets, which may include thousands of attributes spanning laboratory tests,
imaging, and demographic information, careful feature selection is indispensable for iso-
lating clinically meaningful predictors while excluding redundant or spurious variables
[45]. Failures to perform appropriate feature engineering and selection can lead to con-
sequences like that of the previous stage [79]. This reinforces the broader point that
model quality depends not only on the quality of the raw data itself but also on the
rigour with which it is curated, processed, and transformed into features.

Once features are curated, the model training stage involves fitting algorithms to opti-
mise predictive objectives. The choice of model, whether it is linear, non-linear, neural-
based or tree-based, depends on dataset size, problem complexity, and interpretability
requirements [20]. Hyperparameter tuning, often conducted via grid search, random
search, or Bayesian optimisation along with cross-validation, ensures models strike an
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appropriate balance between bias and variance [17]. In clinical contexts, these choices
must be justified not only statistically but also align with domain knowledge through
the inspections of their explanations.

Evaluation determines whether a model generalises beyond its training data, which
makes use of the testing set that should not have been touched until this stage. Per-
formance is quantified through metrics such as accuracy, precision, recall, F1-score, and
the area under the receiver operating characteristic curve (AUC-ROC) [93]. In health-
care, however, metrics like sensitivity and specificity often take precedence, since the
consequences of false negatives may be more severe than false positives [94]. Beyond
these metrics, robust statistical analysis should also be performed, typically focusing
on clinically meaningful effect sizes rather than solely reporting statistical significance
[5, 59].

Examining interpretability and explainability is the final and perhaps the most critical
stage when ML is applied in healthcare. While highly complex models may offer strong
predictive performance, they are often opaque to end-users. Post-hoc, model-agnostic
explanation techniques such as LIME and SHAP allow predictions to be decomposed
into contributions from individual features [74, 95]. This stage promotes transparency,
strengthens clinician trust, and can generate novel clinical insights by highlighting un-
expected relationships within the data [27].

2.2 Equitable and Fair learning

Equity and fairness play complementary but distinct roles in clinical ML. Equity concerns
the just distribution of benefit relative to need [96], while fairness tests for unjustified
disparities in error or outcome across protected groups [84]. They are often spoken of
together and treated as if “more is always better” for both [94, 10, 47]. In practice, they
can pull in different directions, so maximising one may reduce the other. When risk
or clinical need truly differs between protected groups, equity favours allocating more
resources or sensitivity where need is higher. A strict fairness constraint that pursues
identical error rates or predictive values across groups can then reduce benefit to those
with greater need. Conversely, a policy that equalises downstream benefit by tailoring
actions to risk can yield different true or false positive rates, failing a fairness test. A
well-documented case is in the prediction of cardiovascular risk, where women and men
can differ in the incidence of adverse outcomes at baseline. Adjusting thresholds by
sex can improve equity of treatment allocation but can break fairness constraints that
require identical performance metrics [44].

Consequently, this thesis distinguishes equity from fairness, then specialises both to the
modelling choices and evaluation protocols proposed later. Equity refers to proportional
allocation of benefit and burden. In clinical decision support, this means that patients
who differ in clinically relevant need or risk may justifiably receive different actions so
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that downstream outcomes are comparable. Fairness refers to the absence of unjustified
discrimination. Groups that differ only in protected attributes, namely sex or ethnicity,
should not receive systematically worse outcomes nor processes, unless they are indeed
among the valid deciding factors.

In ML, fairness is commonly operationalised as parity of outcome or error rates across
protected groups. This thesis adopts three standard criteria. Equality of Opportunity
requires similar true positive rates across groups [54]. Equalised Odds requires similarity
of both true and false positive rates [11]. Predictive Parity requires similar positive
predictive values [47]. This study also reports an error-rate disparity derived from the
N-sigma idea as a compact statistical summary [37], together with a two dimensional
bias quadrant summary based on average distance from the origin [60]. These metrics are
evaluated on held-out data and are reported alongside conventional predictive metrics
throughout Chapter 5.

In SHIELD, equity is involved at the representation and explanation level. Beyond
outcome parity, this work investigates whether a model distributes explanatory credit
across available features and instances rather than concentrating reliance on a narrow,
potentially proxy-laden subset. This aspect is known as equitable learning in explana-
tions [11]. Nevertheless, it is important to acknowledge that a flatter distribution of
explanatory credit (see Figure 2.1) is not always desirable, nor valid. In some clinical
problems, a small set of biomarkers may legitimately carry most of the signal [82] (e.g.
sex would be a genuine deciding factor of one’s ability to be pregnant). In such cases,
forcing attributions to spread evenly can dilute true signal and harm utility [80]. There-
fore, this thesis treats explanation parity as conditional on two checks. Firstly, grouped
models should preserve predictive performance within acceptable margins. Secondly, the
induced feature rankings remain plausible in light of domain knowledge. Where these
diverge, this thesis prioritises clinical validity and report the tension explicitly rather
than claiming a fairness gain from dispersion alone [3, 56, 80].
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Obesity_SVM_group_dissimilar - SHAP decomposed cll-lasﬁ 0
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Gender_Male
family_history_with_overweight_yes .
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SHAP value (impact on model output)

Figure 2.1: Example of SHAP beeswarm plot, where flatter distribution of explna-
tory credit is not necessarily desirable. The plot is for predicting Insuf-
ficient Weight via SVM and greedy approach of feature grouping. Note
how Gender Male contributes the most to the decision, even more than
Weight (although only by a small margin), since the features are ‘flat’. Also
note the SHAP values with respect to feature value for Gender Male and
Gender Female are not opposite, which is questionable or uninformative
since it means not being male positively influences the prediction towards
insufficient weight, but so does not being female.

2.3 Explainable Artificial Intelligence (XAI)

Explainable Artificial Intelligence (XAI) has emerged in response to a persistent trade-off
in machine learning between model accuracy and model interpretability [12, 3]. As shown
in Figure 2.2, highly intricate models such as deep learning often achieve state-of-the-art
predictive performance but are opaque to human users, whereas simpler models such as
logistic regression or decision trees are more interpretable but may sacrifice accuracy.
This trade-off is particularly problematic in healthcare, where predictive accuracy alone
is insufficient [56]. Clinical adoption requires that model behaviour can be scrutinised,
justified, and aligned with medical reasoning [3, 94]. The goal of XAI is to bridge this
gap by designing models that are inherently more interpretable or by applying post-hoc
explanation techniques that clarify the predictions of otherwise black-box models. In
this way, XAI provides the methodological foundation for balancing performance with
transparency, accountability, and trust in high-stakes domains.

10
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Figure 2.2: Illustration of trade-off between model accuracy and interpretability, adapted
from Barredo et al. [12].

Throughout this thesis, interpretability refers to a model’s inherent ability to be un-
derstood by humans, and explainability focuses on providing human-understandable
reasons for a model’s specific predictions or outputs, often through post-hoc techniques
that break down complex processes [43]. This thesis focuses on improving explainability
over constraining models to be intrinsically interpretable, since SHIELD is designed to
be model-agnostic. One of the components in SHIELD that supports explainability is
a decoder, which transforms latent representations of grouping to human-readable re-
sults. This focus allows for comparison across diverse model classes under a common
explanatory lens.

Among the most widely used explainability tools are SHAP and LIME. SHAP provides
an additive attribution satisfying local accuracy and consistency by connecting to Shap-
ley values from cooperative game theory, while LIME fits a locally faithful surrogate
around the instance of interest. SHAP is chosen over LIME in this study, because its at-
tributions satisfy clear axioms (local accuracy, consistency, missingness) and are additive,
so contributions sum to the prediction difference. These properties make it straightfor-
ward to aggregate instance-level attributions into global summaries, compare groups
for fairness auditing, and map contributions across representation layers. In particular,
the additivity allows attributions to be decoded from latent groups back to the original
clinical features without changing their semantics. SHAP also has efficient implementa-
tions for common model families and supports both model-agnostic and model-specific
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explainers, which helps to maintain methodological consistency across the experiments
[74, 74]. By contrast, LIME relies on sampling and local surrogate fitting, which can
be sensitive to kernel choice and perturbation design, leading to higher variance in ex-
planations and less direct aggregation to corpus-level fairness analyses [95]. For these
reasons, SHAP provides a better match to the goals of this study.

Nevertheless, not all explanation needs are satisfied by additive attributions. In deci-
sion support, counterfactual explanations specify minimal, actionable changes to flip an
outcome (e.g. “to obtain a positive prediction, raise x1 by ...”), which complements
attribution by articulating feasible recourse [115]. In clinical settings, pairing attribu-
tion (“why”) with counterfactual recourse (“how to change”) and fairness auditing (“for
whom”) provides a multi-view account of model behaviour. Therefore, the following
perspective is adopted throughout this thesis. SHAP is used for instance and corpus
level attribution, fairness metrics for group-wise disparities, and decoded mappings to
connect latent structure back to clinically meaningful variables.

2.4 SHAP

SHAP was introduced by Lundberg and Lee to unify a growing set of feature attribution
methods under a single additive framework with clear theoretical guarantees [74]. Their
motivation was practical and theoretical, since many widely used post hoc explainers
produced incompatible scores and sometimes contradictory rankings, making it difficult
to compare explanations across models or datasets. By linking attributions to Shapley
values from cooperative game theory, SHAP selects a unique additive attribution that
satisfies local accuracy, missingness, and consistency. This can also be computed or
closely approximated for common model classes.

Formally, for a trained predictor f : RP—R and an instance x, SHAP defines a baseline
¢o = E[f(X)] and feature contributions {¢;(f, l’)}?zl that satisfy local additivity,

f@)=g¢o+ > ¢i(f,2). (2.1)

j=1

The value of a coalition S of present features is given by a conditional expectation
v:(S) = E[f(X) | Xs = zg], and each ¢; averages the marginal contribution of feature j
over all subsets S C {1,...,p}\{j} using Shapley weights. This gives a common numer-
ical scale to compare how grouped and ungrouped representations use information.

The choice of background distribution determines both the baseline ¢y and how “miss-
ing” features are simulated when forming v, (5). Marginal maskers approximate X_g by
independent draws from their empirical distribution, which is computationally light but
can be inaccurate when predictors are dependent. Conditional maskers preserve corre-
lation by sampling from X_g | Xg = zg at increased computational cost. In healthcare
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data, where strong dependencies are common, this design choice affects attribution sta-
bility. To make fair comparisons between grouped and ungrouped models, the same
background cohort and masking scheme are used across configurations.

In this thesis, a range of commonly used model families were selected to test whether
grouping effects generalise across different learning paradigms. Random Forest [33] and
XGBoost [29] represent ensemble tree methods that are widely applied for their robust-
ness and ability to capture non-linear feature interactions. Logistic regression [57] serves
as a classical linear baseline that is both interpretable and statistically familiar in clin-
ical contexts. SVM [32] and MLP [20] capture non-linear decision boundaries through
margin maximisation and neural representations, respectively.

Exact Shapley computation is exponential in p, so practical explainers provide tractable
estimators that retain local additivity. Hence, appropriate SHAP variants were chosen to
make explanations consistent and feasible across these algorithms. Random Forest and
XGBoost are explained with TreeExplainer [73], which exploits the structure of decision
trees to compute SHAP values in polynomial time. Logistic regression is explained with
LinearExplainer [74] or, when embedded in a pipeline, with a model-agnostic variant.
SVM and MLP are explained with KernelExplainer [74], which approximates SHAP
values by fitting locally weighted surrogates, using the same background masker across
grouped and ungrouped runs to ensure comparability.

Breast_cancer_LogisticRegression_ungrouped - Waterfall (raw) inst=44, class=0

Ax)=0.941
—1.101 = symmetry3
—0.963 = concavity3
—1.089 = texture3
—0.611 = compactnessl m
2.38 = smoothness2
—0.637 = concavity?2 m
—0.801 = radius3
0.648 = concave_pointsl m
—0.37 = concavityl +0.05]
21 other features
05 0.6 0.7 0.8 0.9 1.0

E[ftx)] =0.519

Figure 2.3: Example figure of SHAP waterfall plot, illustrating the case for prediction of
Breast cancer via Logistic Regression without feature grouping.
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Local explanations are visualised with waterfall plots (see 2.3) that show how the con-
tributions move the prediction from the baseline to f(z). Aggregating absolute contri-
butions over a test set yields global importance profiles E,[|¢;(f, z)|], which is displayed
as bar or beeswarm plots (e.g. Figure 2.1). This thesis also tracks the prevalence of
near-zero attributions across instances, since widespread zeros indicate under-used vari-
ables.

Correlated features present a particular challenge because attribution can become sensi-
tive to the masking scheme and model structure. In tree ensembles, correlation can in-
flate or deflate importance in ways that are not purely causal [52, 129], and more broadly,
Shapley implementations can exhibit observation or structural biases when background
assumptions are misspecified [127, 126]. The methodology addresses this by grouping
conditionally dissimilar features before learning, then mapping latent contributions back
to the original variables with a decoder.

Explanations must also be judged for faithfulness to the trained model and for alignment
with fairness goals. Biased models can produce biased explanations [60], so SHAP is
interpreted alongside outcome-level fairness metrics and the bias-quadrant visualisations.
Sensitivity to the background cohort and masker is made explicit, and attributions are
compared under a constant background across grouped and ungrouped runs to isolate
the effect of representation. These practices ensure that shifts observed in attribution
distributions can be credibly linked to grouping rather than to the explainer itself.

It should now be clear SHAP supports two complementary roles within this thesis. At
instance level, waterfalls diagnose whether a prediction relies on a narrow, correlated
subset or on a broader base of features, which is appropriate for auditing individual pa-
tient’s behaviour. At feature level, aggregated attributions quantify equity of reasoning
by measuring how widely the model spreads importance across variables.

2.5 Information theory

Information theory offers a principled language for quantifying uncertainty and statistical
dependence. Originating with Shannon’s work on communication and coding [104], it
provides tools that are directly relevant to ML on clinical tabular data. Throughout
this thesis, the following core quantities are used to capture relevance, redundancy, and
potential proxy relationships.

Let X be a discrete random variable with probability function p(z). The entropy

H(X) = =) p(x) logp(z) (2:2)
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measures the average uncertainty of X. For jointly distributed variables (X,Y’), the
joint and conditional entropies are

H(X,Y) = = plx,y) logp(z,y),  HY |X) = = p(x,y) logp(y | z). (2.3)
z,Yy T,y

Logarithms may be taken with base 2 for bits or base e. The choice only rescales values,
and thus the study uses base 2.

2.5.1 Mutual information

Mutual information (MI) quantifies the total statistical dependence between two vari-
ables. It can be written as a Kullback-Leibler (KL) divergence between the joint and
the product of marginals,

I(X;Y) =) plx,y) log m, (2.4)

and equivalently as an expected reduction in entropy,
I(X;Y) = HX)-H(X|Y) =HY)-HY|X). (2.5)

MI is non-negative, symmetric, and equals zero if and only if X and Y are independent
[34]. It obeys a chain rule,

I(X;Y,2) = I(X;Y)+ I(X; Z | Y), (2.6)

and a data processing inequality, which states that if X — Z — Y forms a Markov
chain then I(X;Y) < I(X;Z). Two interpretations are especially useful for tabular
healthcare features. First, I(X;;Y’) serves as a relevance score for feature X; with
respect to the clinical label Y. Second, pairwise I(X;; X}) reflects redundancy among
features, including correlations arising from measurement practices or physiology.

These ideas motivate classic filter methods for feature selection that seek high relevance
with low redundancy. This balance can be maintained by favouring sets whose members
have large I(X;;Y) while keeping average I(X;; X}) small [90, 114]. Many information-
theoretic views capture these criteria as trade-offs among relevance, redundancy, and
complementarity, expressed through MI decompositions and approximations [24]. Al-
though estimation from finite samples requires care, these properties explain why MI is
widely used to reason about which variables carry unique predictive signal and which
largely duplicate others.
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2.5.2 Conditional mutual information

Conditional mutual information (CMI) isolates the dependence between two variables
that remains after conditioning on a third. It is defined by

XY 12) = 3 play) s S HEL B — H(X | 2) - HX | Y.2). @20

x?y7z

CMI is non-negative and equals zero precisely when X and Y are conditionally indepen-
dent given Z. The chain rule above shows that I(X;Y | Z) measures the incremental
information about X obtained from Y once Z is known. This viewpoint underpins
conditional criteria for feature selection, for example selecting the next feature X; that
maximises I(X;;Y | S) where S is the set of already chosen features, thereby preferring
features that add information beyond what S explains [24, 85, 114].

CMI also provides language for reasoning about proxies and confounding. Let A de-
note a protected attribute and Y be a true label. The quantity I(X;; A | Y) captures
how much information about A leaks through feature X, after accounting for clinical
state. Small values suggest that any association between X, and A is explained by
Y rather than by spurious pathways, while large values indicate residual linkage that
could support proxy discrimination [36, 123]. Because CMI conditions on context, it
is well suited to distinguish clinically necessary dependence from unwanted encoding of
sensitive information.

2.6 Domain knowledge for datasets

The datasets analysed in this thesis were selected not for a specific clinical agenda but
for their methodological diversity and relevance to evaluating equitable and explainable
ML in healthcare domain. Each dataset represents a distinct domain of healthcare but,
more importantly, spans a range of data properties that make predictive modelling and
explanation challenging: from small, curated cohorts (e.g. breast cancer) to large, ad-
ministrative datasets with repeated encounters (e.g. diabetes), from relatively balanced
outcomes to highly imbalanced ones, and from homogeneous numerical features to het-
erogeneous mixes of categorical and continuous variables. Together, these datasets allow
the experiment to test whether SHIELD generalises across varying conditions of clinical
tabular data. Their inclusion also reflects considerations of governance and responsible
use, as discussed in Section 4.1, ensuring that methodological insights are developed in
line with ethical standards of clinical data research.

2.6.1 Obesity

Obesity is a chronic, multifactorial disease characterised by excessive fat accumulation
that poses a major risk to health. It has reached epidemic proportions globally, with
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the World Health Organisation (WHO) estimating that worldwide obesity has nearly
tripled since 1975 [121]. Obesity is associated with increased risk of cardiovascular
diseases, type 2 diabetes, musculoskeletal disorders, and certain types of cancer [58].
The aetiology of obesity is complex, involving the interplay between genetic, behavioural,
and environmental factors. While body mass index (BMI) remains the most commonly
used diagnostic indicator, it is an imperfect measure that fails to capture underlying
heterogeneity in fat distribution and metabolic health [26]. Lifestyle factors such as
dietary patterns, physical activity, and sedentary behaviour play a particularly critical
role in the development and persistence of obesity [77, 81].

In addition to its clinical implications, obesity imposes a considerable economic burden.
In the United States alone, obesity-related healthcare costs are estimated to exceed $170
billion annually [116]. Similar trends are observed worldwide, with obesity increasingly
affecting low and middle income countries due to rapid urbanisation, changes in food
environments, and reduced levels of physical activity [81].

To study this significant disease through a machine learning lens, the University of
California, Irvine (UCI) repository provides the Estimation of Obesity Levels Based on
Eating Habits and Physical Condition dataset [87]. This dataset was constructed from a
population sample of individuals in Mexico, Peru, and Colombia, encompassing diverse
socio-demographic and lifestyle characteristics. It contains 17 attributes capturing eat-
ing habits (e.g. frequency of high-calorie food consumption, vegetable intake, alcohol
consumption), physical condition (e.g. frequency of physical activity, use of transporta-
tion), and demographic information (e.g. gender, age, family history of obesity). The
target variable classifies individuals into one of seven categories ranging from “Insuffi-
cient Weight” to “Obesity Type I117.

The dataset’s inclusion of behavioural and lifestyle factors offers unique value beyond
purely clinical measurements such as BMI. In particular, it reflects the multi-dimensional
drivers of obesity and enables the evaluation of predictive models that capture not only
anthropometric risk but also modifiable lifestyle determinants. This aligns with contem-
porary medical understanding that obesity is not merely a condition of excess weight but
a product of behavioural, social, and environmental interactions. When combined with
model explainability techniques such as SHAP, this dataset provides an opportunity to
assess whether models identify clinically plausible risk factors in line with epidemiological
evidence.

2.6.2 Breast cancer

Breast cancer is the most common cancer among women worldwide, accounting for ap-
proximately one in four cancer diagnoses in women [22]. It is a heterogeneous disease with
multiple subtypes, broadly classified as invasive or non-invasive, that differ in prognosis,
treatment response, and underlying molecular mechanisms [91]. Risk factors are mul-
tifactorial, including genetic predispositions, reproductive history, hormonal exposure,
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environmental influences and lifestyle factors such as alcohol consumption and physical
inactivity [83]. Early detection remains crucial for reducing mortality, with mammog-
raphy and other imaging techniques forming the cornerstone of screening programs in
many countries. In Australia, the National BreastScreen program has significantly con-
tributed to earlier diagnoses and improved survival outcomes, with five-year survival
rates now exceeding 90% [7].

Despite these advances, disparities persist. Women in rural and remote areas, as well as
Aboriginal and Torres Strait Islanders, experience later diagnoses and poorer outcomes
compared to the general population [7]. These disparities highlight the importance of
not only technological innovation in diagnostics, but also equitable access to healthcare
resources. From a clinical perspective, pathological assessment of tumour biopsies re-
mains the gold standard for diagnosis, with histopathological features such as nuclear
size, shape, and chromatin texture being particularly informative in distinguishing be-
nign from malignant tumours.

To facilitate computational research into breast cancer detection, the UCI ML Reposi-
tory hosts the Breast Cancer Wisconsin (Diagnostic) dataset [120]. This dataset origi-
nates from digitised images of fine needle aspirates (FNAs) of breast masses, collected
and curated by the University of Wisconsin Hospitals. Each sample is described by 30
real-valued features computed from cell nuclei present in the aspirates, such as radius,
texture, smoothness, concavity, and symmetry. The features are derived from fundamen-
tal morphological and textural properties, capturing clinically salient aspects of nuclear
atypia that pathologists use when differentiating between benign and malignant tissue.
The dataset consists of 569 instances, of which 357 are benign and 212 are malignant.

The dataset has been used in many ML research as a benchmark due to its balance
of medical relevance and computational tractability [105, 42, 107]. When applied in
conjunction with explainability techniques such as SHAP, models trained on this dataset
can be assessed not only for their predictive accuracy but also for their capacity to
highlight biologically plausible markers that align with established diagnostic criteria.
As such, the dataset provides a powerful foundation for bridging statistical learning
with domain knowledge, reinforcing the importance of model explanations that mirror
established medical understanding.

2.6.3 Heart disease

Coronary heart disease is a major contributor to morbidity and mortality in Australia
and worldwide. In 2022, cardiovascular disease accounted for about one quarter of all
deaths in Australia, and an estimated 600,000 adults had experienced coronary heart
disease at some point in their lives [6]. Coronary events are common and costly, with
about 57,300 acute coronary events estimated in 2021 [6]. The pathophysiology is driven
by atherosclerosis and thrombosis that reduce myocardial perfusion [61]. Clinical presen-
tation ranges from stable angina to acute coronary syndromes. Its risk is shaped by well
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established factors, including blood pressure, lipids, smoking, diabetes and electrocar-
diographic evidence of left ventricular hypertrophy [64, 119]. Contemporary prevention
guidelines operationalise these variables through multivariate equations to estimate ab-
solute risk over 10 years [51].

The UCI Heart Disease repository was used in this research, focusing on the Cleveland
subset that contains 303 patients with 14 attributes and a target indicating the presence
of heart disease [61]. The attributes capture demographics, symptoms, physiology and
test results, including sex, chest pain type, resting blood pressure, maximum heart rate
and the number of major vessels coloured by fluoroscopy [61]. In the original formulation,
the target takes values of 0 to 4 to indicate disease severity, and many studies binarise this
to presence versus absence of disease for classification. The Cleveland subset is widely
used because it contains the fewest missing values among the sites collected and was used
in the seminal validation work by Detrano and colleagues on probability algorithms for
coronary artery disease [39]. These variables align closely with established clinical risk
constructs, which makes the dataset suitable for evaluating both predictive performance
and model explanations in this study.

2.6.4 Diabetes

Diabetes is a chronic metabolic disorder characterised by persistent hyperglycaemia re-
sulting from impaired insulin secretion and/or action. Its global burden is substantial
and rising. The International Diabetes Federation estimates that more than 530 million
adults live with diabetes, with projections exceeding 780 million by 2045 [109]. Type 2
diabetes accounts for the vast majority of cases and is driven by insulin resistance and
progressive beta cell dysfunction, with contributions from genetic susceptibility, adipos-
ity, diet quality, physical inactivity, and social determinants of health. The condition
is associated with microvascular complications such as retinopathy, nephropathy, and
neuropathy, and macrovascular disease including coronary artery disease, stroke, and
peripheral arterial disease. Traditional clinical guidance emphasises comprehensive risk
factor management and individualised glycaemic index targets to balance benefits and
harms [4].

Unplanned hospital readmission is a salient quality and cost outcome in diabetes care.
Readmissions often follow acute metabolic decompensation, infection, or cardiovascular
events, and they are associated with higher mortality risk and system costs. Suboptimal
inpatient glycaemic control, complexity of comorbidity, polypharmacy, and fragmented
transitions of care have all been linked to increased readmission risk [99]. These features
make diabetes a clinically meaningful dataset for predictive modelling and for examining
how model explanations align with known drivers of adverse outcomes.

This study employed the Diabetes 130-US Hospitals for years 1999 to 2008 dataset
from the UCI ML Repository [31]. The dataset aggregates 101,766 inpatient encounters
from 130 hospitals and integrated delivery networks over a 10 year period and was
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introduced and analysed by Strack and colleagues in a study of HbAlc measurement
and readmission [108]. Each encounter contains demographics and administrative fields
(age band, gender, race, admission type, admission source, discharge disposition, time in
hospital, payer code, medical specialty), diagnostic information (primary, secondary, and
tertiary ICD-9 codes), utilisation history of hospitals (number of inpatient, outpatient,
and emergency visits in the prior year), and treatment proxies (number of laboratory
procedures, number of medications, diabetes specific medications such as metformin or
insulin with indicators of dose change or stability). Laboratory result indicators include
categorical summaries for HbAlc (e.g. > 8%, > 7%, normal, none) and serum glucose.
The target variable records readmission as <30, >30, or NO. Many studies, including this
thesis, binarise this outcome to focus on 30 day readmission.

Several characteristics of this dataset influence modelling and interpretation. First, the
outcome is strongly imbalanced, since most encounters are not followed by readmission
within 30 days. Second, many predictors are high cardinality categorical variables that
require careful encoding to avoid leakage and to maintain clinical plausibility. Third, the
dataset contains repeated encounters per patient identifier, which can inflate apparent
performance if train and test partitions are not constructed at patient level. Finally,
some fields are absent for a large fraction of encounters, including race and payer code.
Despite these challenges, the feature set closely mirrors factors known to influence read-
mission risk, which allows model explanations to be compared against established clinical
knowledge about comorbidity burden, intensity of inpatient care, and treatment changes
at discharge [108, 99].
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Related Work

This chapter introduces existing literature, which explored the intersections between a
pair of or at most three circles in Figure 1.1. Hence, the following works serve as inspiring
stepping stones for this thesis to address all of these circles.

3.1 Synergy between SHAP and information theory

Recent studies have explored the synergy between SHAP and MI to balance model
explainability and statistical relevance. For example, Kim et al. proposed a multi-agent
reinforcement learning (RL) framework for clinical feature selection, where each agent’s
reward combined SHAP attribution with MI scores (R; = o- SHAP; + (1 — «v) - MI;) [67].
Their empirical results on a dataset of patients with end-stage renal disease indicated
that the method outperformed traditional selection techniques, including PCA, mutual
RL and SHAP RL [98, 15], in terms of Fl-score and recall, particularly for minority
class predictions. This highlights how SHAP can be grounded in statistical dependence
measures to prioritise features that are both explanatory and relevant to the outcome.

Another feature selection approach that involves two aspects is introduced by Palanichamy
and Ramasamy [85]. Their methods incorporate both MI and CMI to evaluate feature
relevance and redundancy within a class-sensitive context. The Improved Mutual Infor-
mation Feature Selection (IMIFS) algorithm introduces a class-aware scoring mechanism
that iteratively selects features maximising relevance (MI) while minimising redundancy
(CMI) with respect to already selected features:

2 0(sC) 1§~ 2:1(fif] O)

MIFS(S) = e+ () 18] 2 HF [C) + H(f.[C)

(3.1)

where C' is the class label and S is the set of already selected features. Evaluated on
UCI datasets, IMIFS achieved higher accuracy and more compact feature sets compared
to standard MI-based methods. The results underline the importance of identifying
correlation or causal inference between features and classes, which a sole use of SHAP
inherently lacks of.

Expanding the information-theoretic perspective, Manikandan and Abirami proposed a
two-stage selection process based on MI and Monte Carlo Tree Search (MCTS) for filter-
ing both redundant and irrelevant features [78]. Initially, approximate Markov blankets
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are used to eliminate redundancy, followed by Monte Carlo exploration of feature sub-
sets to refine relevance assessment. This approach demonstrated statistically significant
improvement in classification accuracy across multiple microarray datasets, while dy-
namically adapting the selected feature size without fixed thresholds. This suggests
a natural extension where SHAP explanations are anchored by information-theoretic
criteria to enhance both fairness and interpretability.

3.2 Feature grouping literature review

While many approaches, including those mentioned in previous section, treat feature
selection or elimination distinct from grouping, Kuzudsli et al. conducted extensive re-
view on existing grouping-based feature selection [70] . In supervised learning settings,
feature selection (FS) through grouping has become an increasingly used strategy, par-
ticularly in high-dimensional domains such as genomics and image analysis [101]. The
central idea is to cluster features into groups based on some similar metric and then
select representative features from each group. This not only reduces dimensionality but
can also enhances interpretability and model performance.

Clustering-based grouping is by far the most common strategy. Several representative
works illustrate its variations:

e One of the notable methods in this category is the ensemble-based clustering and
ranking technique by Yu et al. (2020), who used K-means clustering to form
feature groups followed by three independent ranking strategies (t-test, signal-to-
noise ratio, and SAM) [122]. Their method culminates in an ensemble feature
selection where a feature must appear across all subsets to be retained. This
redundancy check aims to reinforce feature relevance but overlooks inter-feature
correlations, a critical aspect in domains like genomics where gene co-expression
patterns are common.

e Shang et al. (2007) implemented hierarchical clustering using an information com-
pression index to group features [103]. Within each cluster, they applied the Fisher
criterion to rank features, selecting the top-ranked feature as representative. This
method uniquely focuses on maximising class separability within clusters, offering
a nuanced balance between information compression and discriminatory power.

e Zhang et al. (2018) modified the affinity propagation algorithm to generate feature
clusters and subsequently applied a sequential selection strategy to each cluster
[125]. This two-step approach integrates unsupervised grouping with a wrapper-
style F'S, aiming to retain contextual interdependencies within clusters during se-
lection.

Beyond clustering, alternative formulations are discussed to emphasise stability or direct
integration with learning algorithms:
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e He and Yu (2010) deviated from traditional clustering via kernel density estimation,
paired with mean shift clustering [55]. They then applied an F-statistic-based eval-
uation to select representative features. This approach emphasises feature stability
across different data samples, a crucial attribute often neglected in conventional
methods. Their follow-up work extended this to an ensemble framework to further
enhance feature robustness.

e Regularisation technique is another application of this topic. Fahrmeir et al. (2009)
introduced a method that leverages regularised regression models to determine
feature groupings and representatives, inherently embedding the grouping process
within the model training phase [46]. This integration is particularly beneficial for
managing the bias-variance trade-off in high-dimensional datasets.

Each of these methods contributes distinct perspectives on how to effectively harness
feature grouping in various settings. While some prioritise computational efficiency and
simplicity, others delve into complex models aiming for higher accuracy and stability.
This suggests how the choice of method often hinges on the specific requirements of the
application domain, such as the need for model interpretability, computational resources,
or dataset structure. In the case of this thesis, grouping is pursued not to reduce di-
mensionality, but rather to redistribute explanatory credit and improve equity in model
explanations under clinical conditions.

3.3 Fairness metrics from the perspectives of outcome,
statistics and explanation

Beyond the technical robustness and interpretability achieved through feature selection
and attribution tools like SHAP, MI and CMI, fairness remains a critical dimension
of trustworthy machine learning. Algorithmic decisions must be transparent, equitable
and fair across demographic groups, especially in high-stakes applications. Several works
have examined the intersection of explainability and fairness, highlighting both theoret-
ical tensions and practical solutions.

One of the foundational critiques of existing fairness metrics is presented in the work by
Hardt et al., who argue that demographic parity, which requires outcomes to be indepen-
dent of protected attributes, may paradoxically promote unfair treatment by admitting
unqualified individuals or denying qualified ones solely for the sake of statistical parity
[54]. As a remedy, they introduce two alternative criteria: Equalised Odds and Equal
Opportunity, both rooted in the joint distribution of predictions, outcomes, and pro-
tected attributes. Their framework also proposes a post-processing correction, applied
after model training, which adjusts decision thresholds to satisfy the desired fairness con-
straints without altering the internal model parameters. Notably, their method preserves

23



3 Related Work

predictive accuracy better than adjustment based on demographic parity while improv-
ing fairness across subgroups. This indicates the metric is more suitable for deployment
in sensitive domains such as credit scoring or criminal justice.

While Hardt et al. focused on post hoc fairness correction, Jain et al. propose a novel
statistical framework called N-Sigma to measure algorithmic bias in Al models, par-
ticularly in face recognition systems [60] . Inspired by the 5-sigma threshold used in
hypothesis testing in physics, this metric quantifies performance disparities between de-
mographic groups as a continuous, interpretable value:

N = M’ (3.2)
e

where ua1 and pgo are the means of the two populations being compared and ogq is the
standard deviation of the population used as reference. Unlike binary hypothesis tests
(e.g. t-tests), N-Sigma facilitates risk-tiered decisions. Models with sigma differences
exceeding certain thresholds can be classified as moderate or high risk. Their evaluation
on the Racial Faces in the Wild (RFW) dataset revealed that even models trained
to be demographically neutral still exhibited considerable disparities, underscoring the
necessity for distribution-aware fairness metrics. Importantly, this method provides a
regulatory-aligned lens for Al risk assessment, in line with emerging policy frameworks
such as the EU’s Al Act.

Another complementary perspective is offered by Zhao et al., who delve into the biases
intrinsic to SHAP-based explanations [127]. Their error analysis framework distinguishes
between observation bias (due to data sparsity) and structural bias (due to simplifying
assumptions such as feature independence). These biases result in over-informative or
under-informative explanations. The concepts are formalised and empirically evaluated
using datasets like Bike Sharing and Census Income. Using a novel OOD (Out-of-
Distribution) detection-based total variation distance (TVD) metric, the authors show
that structural bias is particularly severe under assumption-based removal functions (e.g.
marginal, uniform), where distributional drift can exceed 80-90%. This work highlights
the trade-off between tractability and fidelity in XAl, pointing toward the need for hybrid
or adaptive methods that balance data availability with distributional accuracy.

Further bridging the gap between explainability and fairness, Jain et al. also demon-
strated that biased models inherently produce biased explanations, corroborating the
hypothesis that explanation tools must be scrutinised for fairness, not just accuracy
[60]. Their work proposes a SHAP-based post-processing algorithm that detects and
mitigates bias using quadrant-based intervention strategies. This method plots instances
on a SHAP value versus prediction deviation plane, and adjusts outcomes based on their
quadrant and distance from a fairness-neutral baseline (i.e. origin of the plane). This
approach differs from traditional post-processors (e.g. random flipping) by using indi-
vidual SHAP contributions as justification for correction, thereby improving individual-
level fairness without sacrificing group-level metrics. Tested on the COMPAS dataset,
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the method successfully reduced racial bias in recidivism predictions, while maintaining
classification performance.

Guided by these findings, the evaluation of this thesis incorporates both outcome and ex-
planation level fairness. Specifically, SHIELD combines parity metrics, N-sigma and the
bias-quadrant view that jointly highlight disparities in predictions and explanations. Un-
like post-hoc thresholding or label-flipping approaches, this work targets representation-
level interventions, aiming to spread model reliance more evenly across features. This
design choice directly addresses mechanisms highlighted by prior work, which showed
that biased models yield biased explanations and that explainer assumptions can intro-
duce structural errors.

Together, these works illustrate a multifaceted approach to fairness, ranging from theo-
retical definitions and statistical audits to explanation-based corrections. They highlight
that transparency and fairness are mutually reinforcing components of responsible ML
deployment. As SHAP becomes more widely adopted, its applications must be under-
stood not only in terms of attribution explainability but also in how it interacts with
underlying model biases. This integration of fairness into the ML pipeline with consid-
eration of XAT is essential for advancing models that are not only technically robust but
also socially aligned.
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Chapter 4

Methodology

This chapter details the end-to-end methodology underpinning SHIELD, the fairness-
aware clinical ML pipeline, as visually summarised in Figure 4.1. It begins by motivating
the choice of four publicly available, de-identified UCI medical datasets and recording
the ethical safeguards that govern their secondary use. A rigorous preprocessing pipeline
is then described: missing values were imputed with an XGBoost-based classifier; cat-
egorical variables were encoded with a tiered one-hot, label, or ordinal strategy; and
numerical features were standardised where required. A principled train-test split en-
sured the test set remained untouched by imputation, averting information leakage.

The core innovation of SHIELD was the dissimilarity-based feature-grouping framework
driven by CMI. Three anticlustering algorithms, which are greedy, bicriterion, and K-
plus, were introduced, each optimising diversity and dispersion in complementary ways.
A data-driven procedure with graphical heuristics determined the optimal number of par-
titions, balancing intra-group heterogeneity against downstream predictive and fairness
performance. Group-specific autoencoders then produced compact latent embeddings
while preserving feature-level interpretability via decoder-weight reconstructions.

Five representative classifiers, Logistic Regression, SVM, MLP, Random Forest, and XG-
Boost, were trained on these embeddings. Hyperparameters were tuned jointly through
Gaussian-process Bayesian optimisation to maximise cross-validated Receiver Operat-
ing Characteristic - Area Under Curve (ROC-AUC) subject to fairness constraints [106].
Finally, a multi-layered evaluation protocol assessed predictive performance (accuracy,
precision, recall, F1), explanation fidelity (SHAP decomposition), and algorithmic fair-
ness (Equal Opportunity, Equalised Odds, N-Sigma index, and bias-quadrant analysis).
This comprehensive framework ensures that any gains in equity and transparency are
achieved without clinically unacceptable losses in performance, thereby laying a rigorous
foundation for the empirical results presented in the next chapter.

Note that the code and artefacts for this thesis can be found at this repository.

26


https://github.com/geun-yun/SHIELD

Training + hyperparameter tuning

4 Methodology

[ Dataset ]

\ 4
[ Imputation ]

[ Encoding ]

Y

[ Standardisation ]

Data preprocess

dissimilarity matrix

t—"— 5-fold cross 85 : | 15 split
eeietetelete validation
i Training E ¢
i— __________________________ I | Test with the fold's
.—_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_:::—_Z-—B — ;
b ] Trained | _/ Validation
P v ey L,J,,‘ Model score
R —— N
For each foId'sltraining set

Compute Models

Logistic Regression

v

g N

Group by dissimilarity

A J

v

SVM

Random Forest

g N

Use autoencoder to
represent each group
A J

[
[
[
[
[

XGBoost

)
)
MLP ]
)
)

Testing set

Group and compress into
A latent representation

Usé exactly that
of the best
configuration

/Performance\
metrics

/ Faimess
metrics

/" sHAP
analysis

Figure 4.1: End-to-end workflow of SHIELD.

4.1 Data collection

All data used in this study were existing, de-identified clinical and biomedical dataset
obtained from the UCI Machine Learning Repository [113]. Thus, no primary data
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collection from human participants was performed.

Ethics regarding the data collection should never be treated lightly, despite its easiness
to neglect it. It is not just a matter of legal compliance but also a fundamental aspect of
responsible and trustworthy data practices. To properly uphold this expectation, ethical
approval for the secondary analysis of these publicly available datasets was granted
by The Australian National University Human Research Ethics Committee (Protocol
H/2025/0248, “Explainable Health Informatics”), under the low-risk review pathway on
13th of June, 2025 [112]. As a result, all raw data files were imported directly from the
repository via ucimlrepo package, and accessed only by the project team. No identifiable
information was present in the datasets, and all analyses adhered to the ANU Ethics
Office’s data management and confidentiality requirements.

As can be seen in Tables 4.1 and 4.2 below, the four benchmark datasets were selected
to cover a range of clinical classification tasks, each licensed under Creative Commons
Attribution 4.0 and widely used in the literature. Evidently, there was a great deal of re-
search that used these datasets to propose, verify and test their models [105, 42, 40, 130].
Furthermore, it was intentional that most datasets had an imbalanced class distribution,
because it is reflective of the inherent property of medical datasets. A balanced Obe-
sity dataset was still chosen to expose the influence of class distribution. Nevertheless,
this Obesity dataset was resampled using SMOTE to create Obesity_imbalanced with
the following target class proportions: Insufficient weight - 50%, Normal weight - 20%,
Overweight T - 10%, Overweight IT - 8%, Obesity I - 6%, Obesity II - 4%, Obesity
ITT - 2%. This adjustment was to directly examine the resilience of grouping methods
under skewed label distributions, by making use of the same dataset in two different
class distributions. Consequently, the datasets were wisely chosen for their clinical rel-
evance, diversity of feature types, and public availability, ensuring reproducibility and
comparability.

Attribute Obesity Diabetes
D (# of features) 16 47

N (# of instances) 2111 101766

C' (# of Classes) 7 (Balanced) 3 (Imbalanced)
Class Distribution (%) 14, 14, 14, 17, 13, 14, 15 54, 35, 11
Context of missing values MAR MAR
Views (k) 142.06 84.43
Benchmark Exists? No No
Notes DN DN

Table 4.1: Datasets without benchmark [87, 31].
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Attribute Heart Disease Breast Cancer
D (# of features) 13 30

N (# of instances) 303 569

C (# of Classes) 5 (Imbalanced) 2 (Imbalanced)
Class Distribution (%) 54, 18,12, 12, 4 63, 37
Context of missing values MAR MAR
Views (k) 699.04 426.15
Benchmark Exists? Yes Yes

Notes D <N D <N

Table 4.2: Datasets with benchmark [61, 120].

4.2 Data preprocessing

Robust and interpretable machine learning results depend just as much on the quality
of data preparation as on the choice of algorithm. Accordingly, the following subsec-
tions explain the step-by-step approach to preserving clinically meaningful extremes,
converting categorical information into numerical form, placing heterogeneous features
onto comparable scales, and reconstructing plausible values for missing entries. By clar-
ifying why each decision is made and which models truly require it, this section lays
the foundation for the fairness, performance, and explainability analysis presented in
later chapters.

Effective data preprocessing is fundamental to building robust and accurate machine
learning models [68]. Without properly curated and prepared data, even the most sophis-
ticated algorithms may underperform or perform unfairly [69]. Thus, this study treated
preprocessing not as a perfunctory step but as an integral component of methodological
rigour.

Three core operations formed the backbone of the preprocessing pipeline. First, imputa-
tion replaced missing values so that each observation remained usable for model training.
Secondly, encoding translated categorical variables common in medical records into nu-
merical representations compatible with most algorithms. Lastly, scaling (normalisation
or standardisation) mitigated the dominance of features measured on larger numerical
ranges. In sum, these procedures transformed raw data into inputs that satisfied the
assumptions of each model.

Table 4.3 summarises how the five representative models used in this thesis interact
with those preprocessing stages. As corroborated by the table, most linear, kernel, and
neural models require all three components, while tree-based ensembles are more flexible.
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Notably, XGBoost can ingest unscaled, non-encoded inputs and natively handles missing
values, making it attractive when preservation of a pristine test set is paramount. This
heterogeneity in requirements motivates the granular discussion of each step provided in
the following subsections.

Model Requires Requires Requires to handle
encoding standardisation missing values

Logistic Regression Yes Optional/beneficial Yes

SVM (RBF kernel) Yes Yes (highly recommended) Yes

Neural Network (MLP) Yes Yes (highly recommended) Yes

Random Forest Yes No Yes

XGBoost No No No

Table 4.3: Preprocessing Requirements for Selected Models [69, 76].

4.2.1 Outlier removal

Outlier removal is commonly used in ML pipelines to reduce the influence of extreme
values that may distort model training and degrade generalisability [2]. Retaining un-
justified extreme observations carry risk. They can exert disproportionate leverage on
fitted parameters, distort decision thresholds, and inflate variance, especially for mar-
gin or distance based learners and models trained with non-robust losses [69, 131, 2].
However, its appropriateness is highly context-dependent, especially in clinical research,
where numerically atypical values may represent valid and diagnostically significant cases
rather than errors [131].

In this study, no outlier removal was performed for clear reasons. First, the original in-
troduction of the Diabetes dataset by Strack et al. [31] explicitly described the inclusion
criteria for 70,000 inpatient diabetes encounters but did not report statistical outlier
filtering. Instead, they highlighted the importance of preserving real-world variability
to examine historical patterns of care, aligning with best practice for large observational
datasets. Similarly, the Heart disease dataset by Detrano et al. [39] demonstrated that
valid extreme values were critical for probability modelling and must not be removed
without clear evidence of error.

Secondly, subsequent applications of comparable clinical datasets show that synthetic
balancing or imputation may be used for missing data (e.g. SMOTE balancing for
obesity levels in Mendoza et al. [86]), but valid extreme observations are retained un-
less domain knowledge confirms they are artefactual. Removing legitimate edge cases
could bias results, especially in medical research where severe cases often carry critical
information.

In the context of real-world hospital data, extreme lab results or unusually long hospital
stays can reflect severe disease trajectories or rare complications, not noise. Therefore,
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consistent with the established precedent of the original datasets, no outlier removal was
performed to preserve the integrity and representativeness of the cohort.

4.2.2 Encoding

Many medical datasets contain categorical variables that must be expressed numerically
before most learning algorithms can process them. Broadly, three encoding strategies
are available, namely one-hot, label, and ordinal, and the choice depends on (i) whether
the category has an inherent order and (ii) whether the variable is an input feature or
the prediction target. Selecting an inappropriate strategy can inject spurious structure
into the data and bias downstream analyses, so the rationale for each decision is stated
explicitly below.

Nominal features such as race or medication type lack intrinsic ordering. To ensure that
no artificial hierarchy is imposed, these variables were encoded with one-hot encoding,
which expands each category into a binary indicator column [92]. Although effective
and model-agnostic, one-hot encoding inflates dimensionality and can produce sparse
matrices when categories are numerous. This trade-off was deemed acceptable given the
modest cardinality of the nominal variables in the datasets used in this thesis.

For the outcome variable, splitting a single column into multiple one-hot columns would
complicate performance metrics and probabilistic calibration. Instead, label encoding
was applied, assigning an integer identifier to each outcome class [92]. Because tree-based
models treat these integers as mere labels, no ordinal bias is introduced. For linear or
kernel methods, potential ordering artefacts were mitigated by using one-versus-rest
decision functions during training.

Variables such as symptom severity or age bracket convey a natural rank. These were
transformed with ordinal encoding so that the numeric representation preserves mono-
tonic relationships (e.g. Never — 0, Sometimes — 1, Often — 2, Always — 3).
Ordinal encoding maintains the information content of the original scale while avoiding
the dimensionality explosion associated with one-hot encoding.

Taken together, this tiered approach of one-hot for unordered predictors, label encod-
ing for the target, and ordinal encoding for ranked predictors provided a principled
mapping from categorical data to numeric space while minimising information loss and
modelling bias.

4.2.3 Normalisation and standardisation

It is common to see real-world datasets to contain features with varying units and scales
since each feature inherently has its unique statistics (e.g. Age will typically be in order
of 10!, while salary can be in order of 10*, 10° or even higher). For some models, such
disparity can adversely impact model convergence and performance [68]. Normalising
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or standardising these features ensure all variables contribute comparably to distance-
based models and accelerates learning in gradient-based algorithms. Common methods
are as follows [89]:

X — X
Min-Max Normalisation: Xjeyw = <=, (4.1)
Xmax - Xmin
X _
Z-score Standardisation: X, = M’ (4.2)
o

where 1,0 are the mean and standard deviation for X, respectively. The Z-score stan-
dardisation maps each feature to a normal distribution with zero mean and unit variance,
so values are unbounded but typically lie in [—3,3]. Min-max normalisation maps to
[0, 1], where larger values correspond to higher raw magnitudes.

The normalisation method is preferred when the model assumes bounded input, since
it is sensitive to outliers and unseen data containing values outside the original range
can lead to distortion. On the other hand, the standardisation method handles outliers
more robustly through the use of mean and standard deviation, instead of range. It
is also suitable for algorithms that assume normality, such as logistic regression and
SVM, which are used in this thesis. Hence, SHIELD utilised the standardisation where
necessary. It should also be noted that this was applied to ordinal encoded features, but
not nominal ones as they do not have such mean and standard deviation.

4.2.4 Imputation

Missing data is a pervasive issue in clinical datasets due to recording inconsistencies,
omitted tests due to confidential or privacy constraints [28]. In this study, some models
did not accept any missing value. A potential bias towards data instances with missing
values should be considered even if a model tolerated them. The simplest approach was
to drop either instances (row) or features (columns) with missing data [71]. While it
may have been effective under MCAR (Missing Completely at Random) assumptions, it
risked substantial data loss if the missing rate was high.

More sophisticated methods aim to estimate values based on observed data as follows:

e Classifier-based imputation [62]: Treats imputations as a supervised learning task,
training a classifier to predict missing nominal values using other observed features.
This method accommodates missingness in other columns and performs well under
MAR (Missing at Random) assumptions.

e Label spreading/propagation [128]: Semi-supervised learning techniques using graph-
based smoothing. They require encoded inputs and assume strong inter-feature
relations but do not support missingness in features beyond the target.
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e Iterative imputation [8]: Models each feature with missing values as a function
of other features in a round-robin fashion. It balances accuracy and complexity,
although it is sensitive to model bias.

e KNN imputation [111]: Fills in missing values using the average (or mode) of k
nearest neighbours. It is effective under MCAR but computationally expensive
and sensitive to scaling.

e Simple imputation [71, Sect. 4]: Replaces missing entries with mean, median or
mode value. It is fast and robust under MCAR, but naive under MAR or MNAR
assumptions.

Table 4.4 depicts suitability in different contexts and requirement for each imputation
method. As can be seen, classifier-based imputation supports complex feature interac-
tions and high missing rates without requiring full data encoding upfront. In addition,
all of these benefits come with a relatively efficient time complexity (assuming the con-
ventional case, where n < d). Consequently, classifier-based imputation using XGBoost
was adopted for key nominal features with substantial missingness.

Method Context of Handles high Requires Accepts missing values Time
missing data missing rate encoding in other features complexity
Classifier-based MAR Yes No Yes O(n-d)
Label spreading MAR Yes Yes No O(n?)
Label propagation MAR Yes Yes No O(n?)
Iterative Imputer =~ MAR, MCAR Moderately Yes Yes/No Ok -n-d?)
KNN Imputer MCAR Moderately Yes No O(n? - d)
Simple Imputer MCAR No Yes/No Yes O(n)

Table 4.4: Comparison between imputation methods.

4.2.5 Order of preprocessing

While the preceding subsections have detailed each preprocessing component individu-
ally, the sequence in which these operations are applied is equally critical for maintaining
data integrity and ensuring model compatibility. The models considered in this study
fell into three categories based on their preprocessing requirements: (i) requiring all
the preprocessing components, (ii) requiring encoding and imputation only, and (iii)
requiring none.

For models that required all components, the order was carefully structured as follows:

1. Imputation: Missing values should be handled prior to any transformation of cat-
egorical variables. This preserved the original data semantics and avoided intro-
ducing artificial patterns that may have biased the imputation model, especially if
encoding added dimensionality or implied ordinal relationships where none existed.
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2. Encoding: Once missing values were imputed, categorical features were converted
into a numerical format suited for the learning algorithm.

3. Standardisation: This step was last since missing value or ordinal categories could
not be standardised.

As illustrated in Figure 4.2, the order was preserved for models that required partial pre-
processing, as they skipped any unnecessary steps (e.g. RandomForest : imputation —
encoding. By adhering to this systematic order, the preprocessing pipeline maintained
consistency and mitigated the risk of information leakage or distortion during transfor-
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Figure 4.2: Data preprocess flowchart for each model.

4.3 Train-test split

A principled train-test split was essential to reliably assess the generalisability of ML
models [69]. The testing set was to be treated truly unseen and thus remained as
untouched and independent as possible throughout the preprocessing and model training
stages. Any information leakage from the training process into the test set could lead to
overly optimistic evaluations and undermine the validity of model comparisons.

In this study, particular care was taken to ensure the testing set was constructed ex-
clusively from rows that were originally complete, as illustrated in Figure 4.1. This
eliminated the need to apply imputation methods to the test set, thereby avoiding the
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risk of incorporating learned patterns or distributional biases from the training data into
the imputation model.

However, other steps, encoding and standardisation, still needed to be applied to the
test set to ensure compatibility with the model. For instance, categorical features and
numerical features had to be encoded and standardised, respectively, using the same
mappings that derived the training data. This ensured the feature representations in
the test set were consistent with those seen during model training, without introducing
information leakage.

4.4 Feature grouping by dissimilarity

In this study, feature grouping played a critical role in promoting fairness [123, 75, 65],
not just enhancing dimensionality reduction [88]. The central idea was to separate fea-
tures that were highly correlated with each other, particularly those that might have
acted as proxy variables for sensitive attributes, into distinct groups. Proxy variables,
although not explicitly labelled as sensitive (e.g. socioeconomic status in place of race),
can still lead to biased model behaviour if their collective influence remained unchecked
[10, 36]. Hence, the notion of grouping features by dissimilarity, rather than similar-
ity, was a deliberate strategy to mitigate such risks [24]. If similar features, including
potential proxies, were grouped together, their joint effects may have become more pro-
nounced, leading to biased representations in latent space. Thus, grouping by similarity
would have required subsequent adjustments to explicitly manage proxy variables, as it
intends to consolidate correlated features. Conversely, spreading them across different
groups through dissimilarity-based partitioning weakened their impact at the group level
and provided a natural form of regularisation against undue influence.

All three grouping methods used in this study relied on an underlying dissimilarity
matrix [88]. This matrix quantified the degree to which each pair of features provides
different information with respect to the target variable. In particular, dissimilarity is
computed as the complement of CMI between features, aimed to identify features that
contribute unique, non-redundant signals to the prediction task [114].

Let X; and X; denote two input features, and Y be the target variable. The dissimilar-
ity between X; and X; is defined using their CMI given Y, which captured the shared
information between the two features conditional on the outcome variable [34]. Mathe-
matically, CMI was expressed as

MG 1Y) = 3 plaveagoton (LD, (13)

To standardise the scale of CMI and obtain a bounded measure of dissimilarity, it was
normalised through the sum of marginal entropies:
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I(Xi; X5 | Y)

Normalised CMI; ; = H(X) + HX,) +e
i J

(4.4)

where H(X) is the Shannon entropy of feature X and € is a small constant to prevent
division by zero. The resulting dissimilarity was computed as

D; ; =1 — Normalised CMI, ;. (4.5)

The matrix D with entries D;; is symmetric and encodes how dissimilar each pair of
features is, serving as the foundational input for all subsequent grouping strategies.
Normalised CMI is bounded between 0 and 1, where larger values indicate stronger
conditional dependence given Y [34, 114]. Consequently, dissimilarity D; ; is also in the
same interval [0, 1], with larger values indicating more distinct features.

4.4.1 Evaluation metrics for grouping

Each grouping method, despite relying on different heuristics or optimisation strategies,
sought to fulfil a common objective: maximising dissimilarity within groups to weaken
the collective impact of correlated or proxy features. T'wo primary metrics were employed
to assess the quality of feature grouping:

e Diversity: This non-negative metric quantified the average dissimilarity between
features that belonged to the same group. Formally, for each group Gy containing
feature indices i, j € G, the diversity was computed as

Diversity = Z Z

(i<j)eGk

!Gk\ (4.6)

A higher diversity indicated that features within each group were more distinct
from each other.

e Dispersion: This was a more conservative non-negative metric, focusing on the
minimum pairwise dissimilarity between any two features within a group.

Dispersion = mm{ min {D; ;}}. (4.7)
(i<j)eGk "
Maximising dispersion ensured that even the most similar pair within each group
was as dissimilar as possible, thus enforcing strong intra-group heterogeneity.

Finding a partition that had the highest possible value for both diversity and dispersion
is ideal. However, such a partition did not exist as they innately conflicted with one
another to a degree. For instance, one could simply merge features into larger, more
varied groups to raise diversity, but this would decrease dispersion, as some pairs within
those groups will inevitably be more similar than others.

36



4 Methodology

4.4.2 Naive approach

The naive feature grouping strategy adopted a straightforward greedy algorithm that
relied on the dissimilarity matrix derived from CMI.

The method proceeded as shown in Algorithm 1 given the dissimilarity matrix D and
number of groups K: Initial seeds for the groups were selected based on the highest
average dissimilarity scores across all features, ensuring that each group begins with a
representative feature that was maximally distinct from others. Then, the algorithm
iteratively assigned the remaining features to the group for which they exhibited the
highest average dissimilarity with existing group members. This greedy assignment
continued until all features were allocated.

The simplicity of this method allowed for efficient computation, serving it as a use-
ful baseline for evaluating more sophisticated grouping approaches. Also, the number
of groups is denoted as K throughout this thesis instead of the conventional &k (hence
K-plus, not k-plus), as the lower case is reserved for number of folds in the cross valida-
tion.

Algorithm 1 Naive Feature Grouping via CMI-based Dissimilarity

1: Input: Dissimilarity matrix D, number of groups K

2: Initialize K groups with features having the highest row-wise sum in D
3: while there are unassigned features do

4:  for each group g do

5: for each unassigned feature f do

6 Compute average dissimilarity between f and all features in ¢
7 end for

8 Assign feature with maximum average dissimilarity to g

9: end for

10: end while

11: Output: K dissimilar groups

4.4.3 Bicriterion approach

The bicriterion approach to anticlustering simultaneously maximised two complemen-
tary criteria, diversity and dispersion [25] (see Algorithm 2). It aimed to avoid configu-
rations where high overall diversity might still allow clusters of closely related (potential
proxy) features as it enforced relatively high dispersion at the same time. The algorithm
attempted to approximate a Pareto-optimal set of groupings by using local search heuris-
tics, adjusting the assignment of features to groups to improve the following objective:

obj = « - Diversity + ( - Dispersion, (4.8)

where «, 8 quantified the priorities of each criterion.
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Algorithm 2 Bicriterion Anticlustering

Input: Dissimilarity matrix D, number of groups K, weights «, 3
Randomly initialise groups Gf, ..., Gx
repeat

Compute Diversity and Dispersion for current partition p

for each pair of features (z,y) in different groups do

Swap x and y if it improves obj(p)

end for
until no further improvement in objective
Output: Optimised groups maximising bicriterion objective

4.4.4 K-plus anticlustering approach

The K-plus anticlustering method extended traditional k-means anticlustering by ad-
dressing not only the similarity in group means but also discrepancies in high-order dis-
tribution moments, such as variance, skewness and kurtosis [88]. The objective was to
form groups with maximum internal homogeneity (as opposed to conventional k-means
objective), while being similar to each other across multiple statistical dimensions.

Formally, this was achieved by constructing a set of augmented features derived from the
original attributes. These include squared deviations (for variance), cubic deviations (for
skewness), and so forth. The combined objective function, known as the K-plus criterion,
was a weighted sum of the standard k-means error sum of squares (SSE) and additional
SSE terms for each higher-order moment. This formulation allowed for fine-tuned control
over the statistical similarity of groups. Optimisation was performed through local search
heuristics that iteratively swapped features between groups to improve the composite
objective.

Algorithm 3 K-plus Anticlustering

1: Input: Feature matrix X, number of groups K, maximum order 7, weights A1, ..., A,

Construct polynomial features X2, ..., X ()
Initialise groups using k-means++ or random assignment
repeat

Compute SSEk+ for current partition

for each pair of features (z,y) in different groups do

Swap x and y if it reduces SSEk+

end for
until convergence or no improvement
Output: Balanced feature groups with matched statistical properties

H
@
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4.4.5 Choosing the most optimal number of partitions

The hyperparameter K, the number of feature partitions, determined how well dissimilarity-
based grouping fulfils its dual goals of dimensionality reduction and fairness. When K

is set too small, correlated or proxy features are inevitably forced into the same group,
amplifying their combined effect and undermining the intended fairness protection. Con-
versely, if K approaches the total number of raw features, grouping degenerates into an
identity mapping that offers neither interpretability nor computational benefit. Selecting
an optimal K therefore involves balancing intra-group heterogeneity against model-level
performance.

Initially, intrinsic anticlustering quality was inspected as a function of K by plotting
diversity and dispersion, over K € {2,...,10}. Analogous to the elbow and silhouette
diagnostics in conventional clustering [97], the intersection of diversity and dispersion
curves often revealed a knee point beyond which additional partitions yielded diminishing
returns. This graphical heuristic offered a quick sanity check before more computation-
ally intensive searches.

The following systematic search was unfortunately not executed due to time and compu-
tational constraints, which is further discussed in Section 5.5. Because K interacts with
downstream learning objectives, it was planned to be treated as another hyperparame-
ter in the Bayesian optimisation loop described in Section 4.5.2. The surrogate model
would have jointly explored K and other grouping weights («, 3), proposing settings
that maximised five-fold cross-validated ROC-AUC. This end-to-end search would have
ensured that the chosen K aligned with both performance and fairness criteria rather
than solely with internal dispersion statistics.

4.4.6 Latent representation of groups

Once the feature groups have been identified, it became essential to develop appropriate
latent representations for each group to enable downstream model training. The primary
goal of this transformation was to condense the information within each group into a
compact, yet informative vector that retained the group’s key statistical and structural
characteristics.

Unlike traditional feature grouping based on similarity, where dimensionality reduc-
tion techniques such as PCA can capture dominant correlated directions, the groups in
SHIELD were intentionally constructed to consist of dissimilar features. Consequently,
summarisation strategies relying on correlation or redundancy were ineffective. Instead,
a neural network-based approach using group-specific autoencoders was adopted.

For each group, an autoencoder was trained to learn an efficient encoding of the group’s
feature set. Formally, let X(*) € R"*% denote the matrix of dj, features in k-th group
across n samples. A group-specific autoencoder learns an encoding function f; : R% —
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R™ and a decoding function g; : R™ — R% such that the reconstruction loss was
minimised:

min X® o (fr(X H 4.9
The latent vector fk(Xi(k)) thus became the representation of group k for sample ¢,
encapsulating the non-redundant, informative essence of the original features.

To ensure transparency and support model interpretability, a mapping between each
group’s latent representation and its original features was retained. This mapping was
essential for decomposing SHAP values to approximate feature-level attributions by
analysing decoder weights and sensitivity. It also allowed evaluating fairness metrics
with respect to individual features, ensuring that potential biases could be traced even
after dimensionality reduction.

Concretely, under the setting of Equation (4.9), the decoder’s linear layer was expressed
as
ge(z) = W2 44w ¢ gexom, (4.10)

dec
Then, each column of Wée(): described how one latent coordinate contributed to all d
original features. Suppose a downstream classifier produces a vector of latent-space

attributions
o) = [61,..., 0m]T € R™ (4.11)

for group k. To distribute these back to the original features, the elementwise absolute
weight matrix was formed

Wil

dec

Wdec

’Wdec i j]‘ (4.12)

)

and normalised each latent-to-feature mapping so that the contributions summed to
one:

~ ‘ dec
Wi; = Jor (1=1,...,dg;5=1,...,m). (4.13)

) dec

/

The final feature-level attribution vector for group k£ was then
k ~
¢<(3ri)ginal = W(k)¢(k) € de, (414)

so that each original feature ¢ inherited

{ orlglnal} Z Wijd;, (4.15)
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capturing both the model’s sensitivity in latent space and the decoder’s reconstruction-
based mapping back to raw inputs.

By concatenating these per-group decompositions across all K groups, an attribution
vector was recovered over the full original feature space. This principled usage of decoder-
weight-based mapping preserved the interpretability of individual variable even after
dimensionality reduction, enabling both SHAP-driven explanations and fairness assess-
ments at the original feature level.

Once trained on the training data, the group-specific autoencoders were fixed and reused
to transform the test set. This ensured consistent latent representations across both
training and test phases, avoiding leakage and preserving the integrity of the learned
transformations. By applying the same encoding functions f; to the test data, the
model guaranteed comparability of latent vectors and prevented retraining-induced drift
that could have biased evaluation metrics.

In sum, autoencoders provided a principled and flexible framework for deriving la-
tent group embeddings, well-suited for the fairness-aware, dissimilarity-based grouping
paradigm employed in this study.

4.5 Training

This section details how models were fit and tuned on both raw and grouped feature
representations to isolate the effect of dissimilarity-based grouping on performance and
fairness. It begins by motivating the choice of five representative classifiers, namely Lo-
gistic Regression, SVM, MLP, Random Forest, and XGBoost, which span linear, kernel,
neural, and tree-ensemble families (see Subsection 4.5.1). It then describes the hy-
perparameter optimisation procedure that standardises comparison across models and
representations, using cross-validated Bayesian optimisation with consistent preprocess-
ing, data splits, and evaluation protocols (see Subsection 4.5.2). These design choices
ensure that any observed patterns arise from the representation strategy rather than
eccentricity of a particular learner or tuning regime.

4.5.1 Base models

This study evaluated the effectiveness of fairness-aware feature grouping strategies across
a diverse set of machine learning models, each representing a distinct family of learn-
ing paradigms. The chosen models included both linear and non-linear learners, inter-
pretable and complex architectures, as well as tree-based and neural approaches. This
heterogeneity allowed for a robust assessment of the generalisability and fairness impli-
cations of the proposed methodology [47]:
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e Logistic Regression is a widely used linear model suitable for binary classifica-
tion tasks. It models the probability of the positive class using the logistic function
and is optimised via maximum likelihood estimation [57]. Due to its simplicity and
interpretability, it serves as a strong baseline for performance and fairness assess-
ments. However, it assumes linear relationships between features and the log-odds
of the target, which may limit its capacity on complex datasets. Its coeflicients of-
fer direct interpretability, making it a favoured model in clinical and policy-related
applications where transparency is paramount.

e Support Vector Machine (SVM) with a radial basis function (RBF) kernel is
employed to capture non-linear decision boundaries. It aims to maximise the mar-
gin between classes while using kernel tricks to implicitly project data into higher-
dimensional spaces [32, 21]. SVMs are particularly effective in high-dimensional
settings and provide robust decision boundaries in the presenece of outliers . How-
ever, they require extensive hyperparameter tuning and are sensitive to feature
scaling. Moreover, their-black-box nature makes interpretation challenging, par-
ticularly when fairness explanations are required [16].

e Multi-Layer Perceptron (MLP) is a feedforward neural network consisting of
multiple fully connected layers with non-linear activation function [100]. It is ca-
pable of learning complex patterns through backpropagation and gradient-based
optimisation. MLPs offer significant representational flexibility but require careful
tuning of architecture and regularisation to prevent overfitting [48], especially in
small-to-medium sized datasets. Their non-linearity and depth enable the mod-
elling of intricate feature interactions, but they also obscure the individual contri-
bution of each feature, complicating fairness attribution and interpretability unless
supported by post-hoc explainability tools [80].

e Random Forest is an ensemble method based on decision trees trained on boot-
strapped subsets of the data with random feature selection at each split [23]. It
offers strong performance and robustness to noise and overfitting, especially when
dealing with unstructured or heterogeneous data. Due to its ensemble nature,
feature importances can be aggregated to provide some interpretability, although
interactions between trees can make explanations less transparent than with sim-
pler models [19].

e XGBoost is a gradient boosting algorithm that sequentially trains shallow de-
cision trees to minimise a specified loss function [29]. Known for its predictive
power and computational efficiency, XGBoost includes regularisation mechanisms
that prevent overfitting and supports sparsity-aware learning. Unlike traditional
models, XGBoost handles categorical data internally and supports missing values
during training. It offers nuanced control over model complexity through hyper-
parameters such as rate, tree depth, and regularisation weights, making it highly
adaptable but also complex to tune. Feature attribution methods such as SHAP
are particularly effective with XGBoost due to its additive structure [74].
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4.5.2 Hyperparameter tuning

Hyperparameter tuning played a crucial role in obtaining reliable and high-performing
classifiers, particularly when comparing models across different feature representations
[106]. Traditional grid or random search could have been prohibitively expensive and
prone to missing promising regions of the parameter space [17]. Instead, SHIELD em-
ployed a Bayesian optimisation framework, specifically a Gaussian process-based surro-
gate model with an acquisition function of expected-improvement, to efficiently explore
each learner’s hyperparameters [106]. This approach iteratively proposed new configura-
tions that balanced exploration of uncertain regions against exploitation of areas known
to yield high cross-validated performance.

The search space for each learner is defined in Table 4.5, with priors chosen to reflect
orders of magnitude (e.g. log-uniform for regularisation and learning rate parameters)
or categorical choices for architectural decisions (e.g. MLP hidden layer sizes). The next
step was then to perform stratified five-fold cross-validation on the training set, optimis-
ing the mean ROC-AUC over its validation set. Each Bayesian search was iterated 30
times, which empirical studies have shown to be sufficient for convergence in comparable
settings [18].

Once the surrogate model identified the best hyperparameter combination, the corre-
sponding pipeline was refitted on the entirety of the training data. The tuned models
were then evaluated on an independent test set, untouched during both training and
tuning, to yield unbiased estimates of generalised performance.

Symbol Name Range (Type) Description

Feature Grouping Stage

K Number of groups (2, 10] (integer) Number of feature groups to form
a, Bicriterion weights [0, 1] (float) Trade-off between diversity and dispersion
wa, W3, Wy Moment weights [0, 1] (float) Weights for variance, skewness, kurtosis
€ Smoothing constant [10719, 1076] (float) Prevents division by zero in CMI normalisation
Model Training Stage
C Regularisation (LR, SVM)  [0.01, 100] (float) Inverse of regularisation strength
5 Kernel coefficient (SVM) [0.001, 1] (float) Affects RBF kernel spread
n_estimators ~ Number of trees (50, 500] (integer) Used in Random Forest and XGBoost
max_depth Maximum tree depth (3, 15] (integer) Controls model complexity in tree models
learning_rate  Learning rate (XGB, MLP) [0.001, 0.3] (float) Step size shrinkage
hidden_layers Hidden layer sizes (MLP) Varies (tuple) Defines structure of MLP
alpha L2 penalty (MLP) [0.0001, 0.1] (float)  Regularisation term for MLP
k k in k-fold CV (3, 10] (integer) Number of folds in cross-validation

Table 4.5: Hyperparameters used in feature grouping and model training.
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4.6 Evaluation

The evaluation strategy in this thesis was designed to provide a holistic understand-
ing of how dissimilarity-based grouping affects ML models. It extends beyond predictive
performance to also encompass explainability and fairness, acknowledging that robust ac-
curacy alone is insufficient in high-stakes settings. First, Subsection 4.6.1 evaluates pre-
dictive capacity using accuracy, precision, recall and F1-score, with particular attention
to imbalanced clinical datasets. Second, Subsection 4.6.2 assesses model SHAP-based
explanations, ensuring that feature-level attributions remain equitable and transparent
through dissimilar grouping and latent-space transformations. Finally, Subsection 4.6.3
audits fairness from multiple perspectives, including group parity, statistical normali-
sation, and explanation-level analyses. Together, these layers of evaluation provide a
principled framework to balance predictive performance, explainability, and fairness,
ensuring that predictive improvements are not achieved at the expense of ethical and
clinical integrity.

4.6.1 Performance metrics

Robust evaluation of model performance was essential to ensure that fairness-enhancing
transformations did not come at the cost of unacceptable degradation in predictive
accuracy. In this study, four widely used metrics, accuracy, precision, recall and F1-
score, were employed to provide complementary perspectives on classifier behaviour,
especially in datasets exhibiting class imbalance. Each metric was reported for baseline,
raw, and dissimilarity-grouped configurations to highlight trade-offs introduced by the
grouping strategies.

Formally, let TP, TN, FFP, and F'N denote true positives, true negatives, false positives,
and false negatives, respectively. Then, accuracy was defined as:

TP +TN
TP+TN+FP+FN'

Accuracy = (4.16)

While accuracy captured overall correctness, it could have obscured poor performance
on the minority class for imbalanced dataset [49]. To address this, the F1-score was used
as a harmonic mean of precision and recall:

TP TP

Precision = TP+ FP’ Recall (sensitivity) = TP+ N’ (4.17)
TN Precision - Recall
ificity = ————, F1- =2 . 4.1
Specificity TN + FP’ seore Precision + Recall (4.18)
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Precision is relevant in medical contexts where false positives can trigger unnecessary
follow-up tests, procedures, costs and anxiety [56, 94]. Recall (sensitivity) ensures that
true cases are not overlooked, which is often the primary concern in clinical screening
and triage [56, 102]. Specificity was another relevant metric that quantifies the model’s
ability to correctly rule out false cases, but was not explicilty used in this thesis, since
it can be directly derived from the other metrics [56]. That is, it can be computed with
accuracy and recall given the class prevalence m (proportion of positive cases) [93], which
is available as can be seen in Tables 4.1 and 4.2:

Accuracy = 7 - Recall 4+ (1 — ) - Specificity — (4.19)

Accuracy — 7 - Recall

Specificity = (4.20)

1—m

It is worth noting that while ROC-AUC was employed as the optimisation target dur-
ing hyperparameter tuning (see Section 4.5.2), it was not included among the primary
test metrics. The rationale is that it is less intuitive compared to the above metrics,
which makes it less interpretable to end users (clinicians and patients). It also averages
over thresholds, which can obscure disparities and overstate performance in imbalanced
datasets. In this respect, the threshold tuning was deliberately not applied in this study.
Adjusting the classification threshold can optimise sensitivity or specificity depending on
stakeholder priorities, but it complicates fairness comparisons, as group-specific thresh-
olds can artificially inflate equity metrics while reducing transparency [102]. Instead, the
standard threshold of 0.5 for probabilistic models was retained to ensure comparability
across all experimental settings. This choice was consistent with the study’s emphasis
on fairness mechanisms at the representation and grouping level, rather than outcome
post-processing.

4.6.2 SHAP

Explainability is an indispensable requirement for any fairness-enhancing pipeline de-
ployed in high-stakes domains such as healthcare. SHIELD considers this aspect through
the use of SHAP, which quantifies each input feature’s contribution to model predictions.
Given an input z and model f (see Equation (2.1)), the SHAP value for feature i is for-
mally defined as:

b= D SECURLA [fsui(@) = fs(@)], (4.21)

A
SCF\i

where F' denotes the full set of features, and S denotes a subset not containing ¢. This
formulation captures the marginal contribution of feature i, averaged across all possible
coalitions, thereby ensuring the axiomatic properties of consistency, local accuracy, and
fairness across correlated variables [74].
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In the ungrouped configuration, SHAP values were computed directly for each original
feature. In the grouped configuration, the explanation process is mediated by the la-
tent representation zp, where SHAP values are first approximated at the latent level via
Equation (4.11). These latent attributions were then decomposed to feature-level impor-

tances using the decoder weight matrix Wélgg, yielding Equation (4.14), as described in
Subsection 4.4.6. This proportional redistribution ensures that the contribution of each
latent factor is faithfully allocated across its constituent features. Importantly, this pro-
cedure preserves the auditability of feature-level attributions even after dimensionality
reduction, thereby addressing a critical limitation of traditional post-hoc explanations

that often become uninterpretable once features are aggregated [1, 127].

The integration of SHAP into SHIELD thus has a dual role. On one hand, it provides
faithful explanations of model predictions at both latent and feature levels, enabling
clinicians to scrutinise individual decisions. On the other hand, it serves as a diagnostic
tool for evaluating the fairness effects of grouping, since the distribution of SHAP values
directly reflects whether predictive power is concentrated in a few features or more
equitably shared. This duality moves SHAP beyond its conventional use as a post-hoc
explainability method, positioning it as an integral component of the fairness pipeline.

4.6.3 Fairness Metrics

Ensuring algorithmic fairness in clinical machine learning goes beyond verifying that a
model’s predictions are accurate. It requires a principled understanding of how different
sources of bias can arise and propagate through the modelling pipeline. Motivated by
this, the fairness evaluation framework adopted multiple complementary perspectives
that systematically uncovered both direct prediction disparities and deeper structural
explanations of unfairness. This aligned with recent literature calling for fairness audits
that addressed not only outcomes but also how models internally justified those outcomes
[54, 60, 126, 38].

Group Fairness: Equal Opportunity and Equalised Odds

A core starting point in fairness research was group fairness, which is to ensure model
performance metrics were comparable across subgroups defined by sensitive attributes
such as gender or ethnicity. This research focused on Equal Opportunity and Equalised
Odds as formalised by Hardt et al. [54].

Equal Opportunity requires that true positive rates (TPRs) be equal across groups:
Pr(Y =1|Y=1,4A=1)=Pr(Y =1|Y =1,A=0). (4.22)

This ensured that individuals in all groups had equal chance of a beneficial outcome
when they genuinely qualified for it, which is a key concern when model decisions could
influence healthcare delivery or treatment prioritisation.
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Equalised Odds strengthens this by also requiring equal false positive rates (FPRs):

Pr(Y =1|Y=0,A=1)=Pr(Y =1|Y =0,4=0). (4.23)
However, it was noted that Equalised Odds can sometimes conflict with clinical realities if
the underlying base rates genuinely differed due to biological or demographic variation.
These datasets, consisting of objective clinical records rather than subjective human
ratings, were less likely to reflect historical biases encoded through human judgement.
Consequently, Equal Opportunity was particularly appropriate here since it corrected
for unfair treatment without forcing artificial equality where medical evidence supported
different base rates [11]. This design choice demonstrated a balance between fairness and
respecting the clinical integrity of ground truth labels.

Statistical Normalisation: The N-Sigma Index

While group fairness metrics expose mean differences between groups, they do not ac-
count for uncertainty due to small sample sizes or high variance in subgroup distribu-
tions. As Chong et al. argue, fairness improvements that appear large in percentage
terms can be statistically insignificant when sample sizes are small [38]. N-Sigma index
was computed to safeguard against overinterpreting noisy fairness estimates:

le1 — €0

)
O’%-‘,—O’%
\/ 2

where ¢; and o2 denote the mean and variance of the error rates for group i. This nor-
malised gap ensured that any apparent fairness gains were robust to sampling variation.
This is an important step when working with health records, where minority group sizes
could be limited in real-world hospital datasets.

N-o = (4.24)

Explanation-Level Bias: Bias Quadrant Analysis

Prediction parity alone did not guarantee that a model’s internal reasoning is fair. As
Jain et al. highlight, models that appeared fair at the prediction level could still pro-
duce biased explanations, which undermine trust in contexts where interpretability was
critical, such as patient-specific risk scores or feature-driven diagnostic rules [60].

To capture this, explanation bias was audited by measuring differences in local SHAP
attributions for protected features:

By = |El¢; | A=1] - E[p; | A=0]|, (4.25)

where ¢; denotes the Shapley value for feature j. This was then plotted in the bias
quadrant alongside prediction-level disparities to reveal how local explanations align (or
conflict) with model outcomes. This visualisation allowed interpretation of the four
distinct bias regimes:
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1. High prediction bias, High explanation bias: Both the model’s outcomes
and its explanations unfairly favoured one group. For instance, if a diabetes read-
mission model shows higher TPR for males and the SHAP attribution for ‘sex’ is
consistently higher for males, this suggests the model both behaves unfairly and
justifies it unfairly, which is perhaps the most concerning scenario.

2. Low prediction bias, High explanation bias: Predictions appear fair on av-
erage, but explanations revealed that protected features still influenced individual
decisions in a biased manner. For example, the TPR may be equal for genders, but
local attributions for ‘sex’ are higher for males, suggesting hidden proxy effects.

3. Low prediction bias, Low explanation bias: The ideal region, since predic-
tions were equitable and explanations confirmed no undue reliance on sensitive
features. For example, ‘sex’ contributes negligibly and equally across groups.

4. High prediction bias, Low explanation bias: Predictions showed disparities,
but explanations did not attribute this to the protected feature itself, indicating
the bias likely came from other correlated variables. For instance, the model’s
TPR is higher for males but ‘sex’ SHAP values are balanced, suggesting a proxy
like ‘employment status’ might be driving hidden structural bias.

This dual perspective clarified that proxy variables and latent representations can still
amplify bias, even when fairness constraints are applied solely at the prediction level.

Integrated View: A Balanced Fairness Objective

No single fairness test was sufficient in isolation. Prediction-level parity alone could mask
hidden explanation bias, explanation-level auditing alone may have ignored structural
error. By combining group fairness (EO, EOdds), statistical normalisation (N-Sigma),
local explanation bias, and structural error decomposition, the fairness framework aimed
to expose different pathways through which unfairness could arise and persist.

The final composite fairness score was therefore expressed as

Fairness Overview = 7 - Group Parity + (1 — ) - Explanation Parity (4.26)
Equal Opportunity + N-
— o~ < qua. pporQunl y + J) + (1 _ ,y) . (Bias Quadrant)_

(4.27)

These components were balanced with tunable weights ~ that reflected stakeholder prior-
ities, whether equal opportunity was paramount, or explanation consistency was critical.
This overview score ensured that SHIELD preserves fairness across various perspectives
that complement one another.
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Chapter 5

Results and Discussion

5.1 Data Preprocessing

The experimental adjustment in data preprocessing explained in Section 4.2 instigated
the following results. Table 5.1 indicates how one-hot encoding led to an increase in
feature dimensionality for datasets with multiple categorical attributes. For instance, the
Obesity dataset expanded from 16 raw variables to 25 encoded features, while Diabetes
retained 47 but with significantly more sparse encoding internally. This expansion was
relevant because it affected both computational complexity and the grouping process,
as groups were constructed in the encoded feature space.

Dataset Original Rows Final Rows Retention Feature Count Change
Breast Cancer 569 569 100.0% 30 — 30
Heart Disease 303 303 100.0% 13 — 13
Obesity 2,111 2,111 100.0% 16 — 25
Diabetes 101,766 98,053 96.35% 47 — 47

Table 5.1: Post-preprocessing dataset overview, including feature expansion due to one-
hot encoding.

Table 5.2 reveals distinct class-balance characteristics across datasets after preprocess-
ing. The Obesity dataset maintained a balanced distribution across seven BMI categories
by design, whereas the remaining datasets exhibited notable class imbalance. Such im-
balance is a well-documented phenomenon in healthcare data and often arises naturally
because the general population is predominantly composed of individuals without the
target condition. In real-world epidemiological contexts, disease prevalence is typically
low, which leads to a healthy class dominating the dataset. However, this trend can
reverse or become less pronounced in clinical or hospital-based datasets. This is because
data collection in these settings is conditional on healthcare-seeking behaviour, mean-
ing participants are more likely to present with symptoms that prompt a medical visit.
Consequently, the observed distributions highlight the significance of contextualising
imbalance in healthcare datasets, where they often exhibit a conditional sampling bias.
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This bias underscores the importance of carefully interpreting class distribution in pre-
dictive modelling, as the level of imbalance is influenced not only by disease prevalence
but also by the context and setting of data acquisition.

Dataset Split # Samples

Class Distribution (%)

Trai 455
Breast Cancer ram

Benign: 62.6, Malignant: 37.4

Test 114 Benign: 64.0, Malignant: 36.0
. Train 242 No Disease: 54.5, Disease: 45.5
Heart Disease
Test 61 No Disease: 55.7, Disease: 44.3
. Train 1,689 Classes balanced across 7 BMI categories
Obesity ) o
Test 422 Same proportion as training
. Train 77,700 Class 0: 11.3, Class 1: 35.3, Class 2: 53.4
Diabetes
Test 20,353 Class 0: 11.2, Class 1: 35.5, Class 2: 53.3

Table 5.2: Train-test split and class distribution for all datasets after preprocessing.

Clearly, the Diabetes dataset posed the greatest challenge in terms of its size and missing
data. While most features had negligible missingness, several key attributes exhibited
extreme sparsity, making naive imputation infeasible and risking bias propagation or
data leakage. Table 5.3 summarises these features, their missingness rates, and the

corrective actions taken.

Feature Not Missing Missing % Missing Action Taken
weight 3,197 98,569 96.9% Feature removed
max_glu serum 5,346 96,420 94.7%  Imputed (XGBoost)
A1Cresult 17,018 84,748 83.3%  Imputed (XGBoost)
medical specialty 51,817 49,949 49.1%  Imputed (XGBoost)
payer_code 61,510 40,256 39.5%  Imputed (XGBoost)
race 99,493 2,273 2.23% Dropped rows with NA
diag-3 100,343 1,423 1.40% Dropped rows with NA
diag_ 2 101,408 358 0.35% Dropped rows with NA
diag 1 101,745 21 < 0.1% Dropped rows with NA

Table 5.3: Summary of features with severe missingness in Diabetes dataset and prepro-

cessing decisions.

These decisions were guided by three considerations: (i) extremely sparse feature, namely
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weight, was removed to prevent injecting noise through imputation; (ii) features with
moderate to high missingness but with clinical relevance (e.g. A1Cresult, payer_code)
were imputed using an XGBoost classifier to preserve an ability to predict without
discarding large portions of the dataset; (iii) low-missing features (diag_1-diag 3) were
handled by row-wise removal to maintain simplicity and avoid introducing imputation
bias. Consequently, the retention ended up being incomplete, but still high (96.35%)
despite discarding severely incomplete records.

5.2 Feature grouping

This section focuses on empirical results of the grouping step. First, the CMI-derived dis-
similarity structure of the feature graph is characterised with a heatmap (see Figure 5.1).
Second, the effect of varying the number of groups K is examined by plotting the two
anticlustering criteria defined in Subsection 4.4.1, illustrated as Figure 5.2. Finally, the
immediate implications of these patterns for the grouping step are summarised in Sub-
section 5.2.3, with discussion confined to how the induced partitions constrain correlated
signals within the feature space.

5.2.1 CMI-based pairwise dissimilarity

Across datasets, the CMI-based pairwise dissimilarity matrices consistently exhibited
clinically coherent structure. Figure 5.1 shows the normalised dissimilarity matrix for
the Heart Disease dataset. Several patterns aligned with the domain knowledge. Pairs
with lower dissimilarity score, such as age-trestbps (trestbps stands for resting blood
pressure) and age-chol (chol stands for serum cholestoral) exhibited d ~ 0.62, which is
clinically plausible given that age influences both blood pressure and lipid levels. Mean-
while, those with higher scores (weaker relation), such as age-sex with d =~ 0.82, reflect
minimal shared information once conditioned on disease status. These relationships cor-
roborate that CMI captured clinically relevant dependencies while revealing proxy risks,
such as age being highly connected to multiple physiological measures.
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Conditional Mutual Information (CMI) Heatmap
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Figure 5.1: CMI-based dissimilarity matrix for Heart Disease dataset. Lower values in-
dicate stronger dependency.

5.2.2 Trade-off between diversity and dispersion

The principal empirical finding was that increasing the number of groups K almost
monotonically reduced diversity. Figure 5.2 illustrates the relationship between average
diversity and minimum dispersion as K varies from 2 to 10. As can be seen, diversity,
which measures the mean pairwise dissimilarity between groups, consistently declined
as K increased because forming more groups reduced opportunities for inter-group sep-
aration. The rate of decline differed similarly across methods. K-plus maintained the
highest diversity throughout, starting near 5.8 at K = 2 and remaining above 1.0 even
at K = 10, whereas all the other methods started at around 3.9 and dropped below 0.6
by K = 10. This scale difference reflects K-plus’ design objective of maximising global
centroid separation without considering worst-case margins.
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Figure 5.2: Average diversity (left axis) and minimum dispersion (right axis) versus
the number of groups k& on the Breast Cancer CMI graph for four group-
ing strategies. Higher is better for both criteria. The plots are ar-
ranged side by side rather than stacked vertically to enable simultane-
ous comparison of all cases at once. The same rationale applies to Fig-
ures 5.3, 5.6, 5.7, 5.8, 5.9, 5.11, 5.12, 5.13, 5.14 and 5.15. Some plots are also
enlarged to exceed the default margin for better readability.

Dispersion values, in contrast, were tightly clustered across methods and K values,
remaining within the narrow band of approximately 0.554 to 0.556. For instance, Bicri-
terion peaked at 0.5556 around K = 7, and Greedy reached 0.5554 at k£ = 9, but these
increments were negligible relative to the concurrent diversity loss. K-plus exhibited an
almost flat dispersion curve near 0.5541 because its anti-clustering algorithm does not
explicitly address minimum pairwise distances. Instead, it concentrated on maximising
overall group spread. Consequently, improvements in dispersion at higher K offered
minimal practical benefit and were not to drive the choice of K.

Sophisticated methods such as Bicriterion and K-plus achieved favourable trade-offs
at smaller K values. At K = 3 ~ 5, for example, Bicriterion retained a diversity of
approximately 2.1 while reaching dispersion close to its upper bound (0.5555). K-plus
also remained exceptionally strong at low K, with diversity above 4.0 and dispersion
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stable at 0.554. In contrast, Greedy and Random required K > 8 to approach their best
dispersion, by which point diversity had diminished by over 85%. These trends confirmed
that advanced strategies could cluster features into sufficiently dissimilar groups early,
avoiding the need for excessive partitioning.

From a practical standpoint, the marginal gains in dispersion beyond K = 5 did not
compensate for the steep diversity loss observed across all methods. This justified the
choice of K = 4 as the default configuration throughout the experiments including other
datasets, which exhibited the same trend, as it balanced strong diversity with near-
maximal dispersion, supporting both effective separation and computational efficiency.

5.2.3 Implications of grouping

The results above corroborate that grouping features based on dissimilarity effectively
reduces the influence of proxy variables. In healthcare datasets, some features, such
as age, exhibit strong correlations with multiple clinical indicators like cholesterol and
blood pressure. When these variables appear together in an ungrouped model, their
combined effect can disproportionately shape predictions, creating hidden pathways for
sensitive attributes to leak into the decision-making process. By forcing such features
into separate groups, dissimilarity-driven grouping disrupts these correlations at the
latent representation level. As a result, no single latent factor can fully reconstruct the
protected information, mitigating risks of indirect discrimination. As already noted,
the CMI heatmap in Figure 5.1 supports this rationale by showing that age-trestbps
and age-chol pairs exhibited relatively low dissimilarity scores (approximately 0.62),
while weakly related pairs like sex—cp approached 0.91. These observations confirm that
grouping prioritises clinically meaningful independence.

Feature grouping promotes a more balanced usage of the available predictors, which
directly supports equitable learning. Without grouping, models frequently over-rely on
a few dominant variables, leaving many others underutilised or completely inactive, as
evidenced by steep importance drop-offs in SHAP plots (see Figure 5.6). Grouped repre-
sentations flatten this distribution by ensuring each latent factor combines signals from
multiple, diverse features. This reduces the dominance of any single attribute, partic-
ularly those correlated with sensitive characteristics. This also distributes predictive
responsibility more evenly across the feature set. The SHAP analysis confirms that
grouped configurations reduce the prevalence of zero-attribution features and increase
participation of mid-importance variables, aligning with fairness objectives by limiting
systemic biases encoded in individual predictors.

Beyond fairness benefits, grouping introduces practical advantages for computational
efficiency when operating on grouped representations instead of the full feature set. Re-
ducing dimensionality from dozens of raw variables to a handful of groups simplifies the
complexity of model fitting, especially for algorithms sensitive to feature dimensionality
such as logistic regression, SVM, and MLP. Although grouping incurs additional cost
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for encoding and decoding latent representations, this overhead is minimal compared
to the gains during repeated training and hyperparameter optimisation. For example,
compressing the Obesity dataset from 25 encoded features to K = 4 groups signifi-
cantly reduced input dimensionality without incurring major accuracy penalties (see
Section 5.4.1). This dimensionality reduction shortens training times, lowers memory
usage, and decreases the risk of overfitting, making grouped pipelines more scalable for
high-dimensional healthcare applications.

5.3 Tuned hyperparameters

As listed in Table 5.4, sophisticated partitions (Bicriterion, K-plus) produced hyperpa-
rameters that closely tracked the ungrouped optimum, whereas naive partitions (Ran-
dom, Greedy) forced larger, compensatory deviations. The table summarises the tuned
hyperparameters for all models on the Obesity dataset across grouping strategies. Similar
patterns were observed in the other datasets, but Obesity was chosen to be a represen-
tative case for closer analysis.

A key theme is the contrast between grouped and ungrouped configurations. Sophisti-
cated grouping strategies such as Bicriterion and K-plus often produced hyperparameter
values close to those of the ungrouped baseline, while Random and Greedy diverged more
strongly. This convergence suggests that principled grouping can preserve much of the
inductive bias of the ungrouped feature space, whereas ad hoc partitions disrupt signal
structure, forcing models to compensate with more extreme tuning.

For linear models, both Logistic Regression and SVM showed substantial variability in
the regularisation parameter C. Values spanned two orders of magnitude, from as low
as C' = 0.82 (random) to the maximum allowed C' = 100 (ungrouped and K-plus SVM).
The fact that optimal C' was often at the boundary of the search range highlights two
important points: (i) the search space may not have fully captured the true optimum,
and (ii) grouping could have fundamentally altered how much regularisation the model
required. Random grouping, for instance, needed much stronger penalisation to prevent
overfitting on disrupted feature signals, while Bicriterion and K-plus aligned more closely
with the ungrouped settings, implying that their structured partitions better preserved
useful information.

Neural models (MLP) were far less sensitive to grouping. The hidden layer size con-
sistently tuned to the smallest option (50 units) across all groupings, and both a and
the learning rate remained stable at their lower search bounds (0.0001 and 0.001). This
consistency suggests that MLPs internally absorbed feature redundancy and correlation,
making them less reliant on hyperparameter adjustments. This is corroborated in Fig-
ures 5.4 and 5.5, where the MLP model yields the most consistent performance across
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different grouping methods. However, the repeated selection of boundary values indi-
cates that the model’s capacity could potentially be further optimised if larger hidden
sizes or different learning rates were explored.

Tree-based models illustrate a different dynamic. Random Forest consistently favoured
moderately large ensembles (178-248 trees) and shallow depths (8-15), with the sqrt
setting for maximum features selected in every case. This stability across grouping
strategies demonstrates the robustness of bagging and feature subsampling in counter-
acting grouping perturbations. K-plus and Bicriterion again picked the closer (higher)
value to that of Ungrouped compared to other methods. Furthermore, XGBoost exhib-
ited systematic shifts, where the number of estimators reached the maximum (500) and
depths were also near the upper bound (14-15) in ungrouped, K-plus, and Bicriterion set-
tings. This boundary-hitting behaviour shows that gradient-boosted trees increasingly
demanded complexity when feature groups were introduced, particularly with structured
partitions, whereas Random grouping converged on fewer estimators (278) and a higher
learning rate (n = 0.025). Such divergence reveals a trade-off between shallow, high-rate
learners that quickly adapt to noisy groupings and deeper, slower learners that exploit
structured signals.

Hyperparameter Ungrouped Random Greedy K-plus Bicriterion
LR C 2.98 15.1 10.7 8.38 9.90
SVM C 100 0.82 9.56 100 47.2
SVM ~ 0.021 0.0012 0.327 0.028 0.020
MLP hidden layer size 50 50 50 20 50
MLP « 0.0001 0.0001 0.0001 0.0001 0.0001
MLP learning rate 0.001 0.001 0.001 0.001 0.001
RF n_estimators 215 182 178 248 198
RF max depth 10 9 8 15 9
RF max features sqrt sqrt sqrt sqrt sqrt
XGB n_estimators 500 278 281 500 500
XGB max depth 15 8 9 15 14
XGB learning rate (7) 0.001 0.025 0.012  0.00103 0.00130
XGB subsample 0.88 0.99 0.99 0.60 0.60
XGB colsample by tree 0.88 0.99 0.99 0.60 0.60

Table 5.4: Tuned hyperparameters for all models on Obesity.
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5.4 Train and test results

This section exemplifies that dissimilarity-based grouping exhibited a consistent trade-
off. There was a modest reductions in predictive performance relative to ungrouped
features with mean decreases of 3.43% in accuracy, 3.82% in recall, 6.41% in precision,
and 5.16% in Fl-score (see Figure 5.3 in Subsection 5.4.1). In return, SHAP analysis
demonstrated the equitable distribution of feature contribution as well as more produc-
tive use of instances when grouped. Furthermore, grouping led to systematic overview
fairness gains by 2.42% on average and remarkable 9.47% improvement on average dis-
tance from origin of the bias quadrant (see Figure 5.15 in Subsection 5.4.2). Benefits
tended to be more visible in smaller datasets where individual instances exerted more
influence, reflecting the significance of broader distribution of feature attributions. This
section concludes by discussing the practical implications of the results for clinical de-
ployment (see Subsection 5.4.3), such as improvement of sample efficiency and reduction
of participant burden.

5.4.1 Performance metrics

Across all datasets and grouping methods, accuracy consistently scored the highest
among the four metrics. This pattern is often expected in medical classification problems
where class imbalance or conservative decision thresholds may inflate overall correctness
without necessarily optimising sensitivity to the positive class [56]. While high accuracy
suggests robust general classification performance, the relatively lower F1-scores and re-
calls in certain datasets (particularly Heart Disease and Diabetes) reveal that positive
class detection may still be challenging. In the medical context, this trade-off is criti-
cal. A model that maintains high accuracy but underperforms in recall risks failing to
identify patients with the condition, which can have serious clinical consequences.

Before examining the variability of predictive performance across grouping methods in
Figure 5.3, it is worth highlighting some dataset-specific patterns that emerged from
the aggregated results. The Breast Cancer dataset exhibited near-ceiling performance
across all metrics and grouping methods, indicating that the classification problem was
relatively well-posed and robust to feature grouping. The Obesity dataset similarly
showed high accuracy and balanced F'l-score, precision, and recall, despite having the
most number of classes (7), suggesting stable model behaviour across groupings. In
contrast, the Diabetes dataset demonstrated greater metric variability, particularly in
recall, where some grouping strategies suffered from notable performance drops. The
Heart Disease dataset also stood out as the most challenging, since not only were average
scores lower across all metrics, but the gap between accuracy and recall was wider,
signalling potential limitations in capturing true positive cases. Across all datasets, the
choice of grouping method appeared to have a smaller impact than the intrinsic nature
of the dataset, as metrics for each dataset remained relatively consistent regardless of
grouping strategy.
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Quantitatively, when comparing grouped methods against the ungrouped baseline, it
was observed that accuracy, recall, Fl-score, and precision decreased on average by
3.43%, 3.82%, 5.16%, and 6.41% respectively. This consistent downward shift indicates
a modest but systematic performance trade-off associated with grouping. The largest
observed performance gap was in the case of Obesity with the K-plus grouping method for
recall, which showed a 20.14% decrease relative to the ungrouped configuration. These
results suggest that while grouping may offer computational or equitability benefits, it
tends to introduce small yet measurable reductions in predictive performance, with the
magnitude of this reduction varying across datasets and metrics.
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Figure 5.3: Mean accuracy, F1-score, precision, and recall of models across datasets and
grouping methods.

While the overall trend indicates that grouped methods tended to underperform the
ungrouped baseline, an important exception arose with the K-plus strategy in more
challenging datasets. Notably, K-plus outperformed the ungrouped configuration across
all four metrics for Heart Disease, with gains of up to 9.87% in precision and 5.89% in
Fl-score. This suggests that extreme (compared to bicriterion) feature grouping could
enhance signal extraction and model discrimination in scenarios where feature redun-
dancy or noise hampered learning. Interestingly, this advantage was most pronounced in
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imbalanced datasets (all but Obeisty), which were generally harder due to skewed class
distributions and the difficulty of detecting minority-class cases. In contrast, the Obesity
dataset was relatively balanced across its seven classes and exhibited near-ceiling perfor-
mance without grouping. Meanwhile, K-plus performed substantially worse, with drops
of up to 21.57% in recall compared to the ungrouped case. This stark contrast highlights
that the benefits of grouping were highly context-dependent. While they could have
mitigated challenges in complex, imbalanced datasets by improving minority-class sen-
sitivity, they may have disrupted well-established feature-class relationships in simpler,
balanced problems. Consequently, grouping strategies like K-plus should be deployed
selectively, informed by dataset balance and class separability.

Beyond the aggregated metric view, this experiment also conducted a more granular
benchmark comparison for the Breast Cancer dataset. Figures 5.4 and 5.5 overlay the
results of each grouping method on top of benchmark baseline distributions, which cap-
ture the minimum, mean, and maximum performance across multiple runs for each
classifier as provided in UCI ML Repository [120]. This allows direct visual comparison
of grouped approaches against the variability range of an established baseline.

Baseline Model Performance - Breast Cancer (Accuracy)
Benchmark min-mean-max with grouping overlays

Logistic Regression 1 + ° AOTD—r‘ x
Neural Network Classification + - 60 Q
Random Forest Classification 1 X — o) h - +
Support Vector Classification A A<> 0. ol
Grouping
O Ungrouped [0 Kplus <>
P i~ ] X Random <> Bicriterion A |m| "
Xgboost Classification A Greedy % o
88 90 92 94 9% o8 100

Accuracy (%)

Figure 5.4: Accuracy results of grouping methods against Breast Cancer benchmark,
represented by blue line and dot.

From the benchmark overlays in Figures 5.4 and 5.5, it was evident that K-plus and Bi-
criterion generally produced results closest to the ungrouped baseline across classifiers.
Greedy consistently performed slightly worse than the ungrouped case, while Random
exhibited the largest deviations, sometimes outperforming and sometimes underperform-
ing relative to the baseline. For example, in accuracy, the mean absolute deviation from
the ungrouped baseline across all classifiers was only 0.38% for K-plus and 0.41% for
Bicriterion, compared to 1.13% for Greedy and 2.46% for Random. A similar pattern
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Baseline Model Performance - Breast Cancer (Precision)
Benchmark min-mean-max with grouping overlays
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Figure 5.5: Precision results of grouping methods against Breast Cancer benchmark,
represented by the blue line and dot.

was observed for precision, where K-plus and Bicriterion differed by 0.35% and 0.39%
from the ungrouped mean respectively, while Greedy had a deviation of 1.02% and Ran-
dom of 2.11%. Importantly, most of the grouping results lay within the benchmark
variability range, indicating that performance differences were well within the expected
stochastic variation. An exception was the MLP classifier, where several groupings,
particularly K-plus, achieved results near the upper benchmark bound, suggesting par-
ticularly favourable interaction between grouping and neural architectures.

Random grouping underperformed the method averages of XGBoost and Random Forest
by 1.4% and 3.3%, respectively. Considering their standard deviations (SDs) were only
0.9% and 1.5%, these gaps equated to 1.5 and 2.2 SDs, indicating statistically meaningful
differences. This relatively weaker performance of Random grouping on tree-based mod-
els could be explained by the way these models exploited structured feature relationships.
Tree-based methods depend heavily on early, high-gain splits formed by correlated or
interacting features [52, 129]. Hence, random grouping may have disrupted these struc-
tures by separating mutually informative features or mixing them with low-importance
variables in non-systematic or meaningless way, thereby reducing individual split gains.
This could have led the model to select suboptimal splits in the upper tree levels, prop-
agating noise into downstream nodes and lowering predictive performance. In contrast,
models like MLPs or SVMs, which learn distributed decision boundaries more globally,
were more resilient to the disruption of feature structure caused by random grouping.
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5.4.2 SHAP and fairness metrics

A central goal of this study was to assess how feature grouping affects a model’s equi-
table learning in addition to predictive performance. On the surface level, SHAP values
were used to quantify each feature’s contribution to model predictions. Beyond this
explainability, SHAP here served to evaluate whether grouping encourages the model
to rely more evenly on the available features and instances, rather than concentrating
decision-making power in a small dominant subset. This is particularly important in
medical applications, where each feature often represents clinically relevant information
and each patient instance is valuable in terms of availability and relevancy. With this
in mind, the SHAP and fairness results of SHIELD are discussed in this subsection co-
herently as follows: (i) the overall impact of grouping compared to ungrouped cases,
then (ii) comparison across grouping methods and ML models, followed by (iii) fur-
ther examination of other insightful results such as instance-level explanations, SHAP
range statistics and bias quadrant, and ending with (iv) more detailed fairness metrics
comparison between grouping methods.

Grouping versus not grouping

A consistent pattern across datasets was that grouped representations led to more equi-
table use of features and instances compared to the ungrouped baseline. As illustrated
by SHAP plots including Figure 5.6, the ungrouped case was dominated by a small
subset of features, producing steep drop-offs in importance and leaving many features
with near-zero contribution. This concentration implies that large portions of the fea-
ture space were underused, and in some cases entire variables contributed nothing to
the model’s decision-making. Grouping counteracted this effect by flattening the SHAP
distribution: more features were assigned moderate levels of importance and fewer in-
stances were associated with zero SHAP values. In practice, this means that grouped
models make more use of the available data, essentially reducing ‘waste’.

The more balanced reliance on features also translated into improvements in fairness met-
rics. For example, in Equal Opportunity, the ungrouped Obesity model was recorded
with a disparity of 0.520, whereas grouping reduced this to 0.373 with K-plus and 0.232
with Bicriterion (see Figure 5.15). Similarly, in Equalised Odds, grouping lowered the
disparity in Obesity from 0.520 to 0.373 and 0.214 with K-plus and Bicriterion, respec-
tively. These reductions indicate that grouping prevented single attributes, particularly
sensitive ones, from becoming disproportionately influential in determining positive out-
comes. By mixing privileged and unprivileged samples within latent groups, membership
of a protected attribute ceased to dictate outcomes in a deterministic manner.
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Figure 5.6: Comparison of SHAP plots for Diabetes classification by Logistic Regression between different
grouping methods including ungrouped case.
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The effect of grouping was especially prominent in smaller datasets where each instance
carried greater weight. In Heart Disease (303 instances), grouping reduced Equal Oppor-
tunity disparity from 0.520 in the ungrouped case to 0.232 with Bicriterion. In Obesity
(2111 instances), the improvement was smaller but still measurable, with Bicriterion
at 0.091 compared to 0.030 for the ungrouped case. By contrast, in Diabetes (101,766
instances), grouping had little effect because the sheer volume of data already ensured
more stable decision boundaries, so fairness disparities were low in both grouped and
ungrouped cases. This confirms that the benefits of grouping for fairness were inversely
proportional to dataset size, with the strongest gains observed when data was scarce and
each observation was more influential. Similarly, its benefits diminished in very large
datasets, where data abundance already regularised feature contributions.

It is also important to note the difference between the balanced and imbalanced Obe-
sity datasets. In the synthetically imbalanced version (Obesity_imbalanced), created
by oversampling minority classes with SMOTE, fairness disparities were amplified. For
instance, Equal Opportunity worsened from 0.103 in balanced Obesity to 0.142 in Obe-
sity_imbalanced under Random grouping, and Average Distance from Origin increased
from 0.216 to 0.313 in the ungrouped case. Grouping, especially Bicriterion, partly
mitigated this degradation, achieving 0.281 for Average Distance compared to 0.313 un-
grouped. This suggests that while class imbalance inherently increased fairness risks,
sophisticated grouping offered some resilience by enforcing more equitable contribution
of features and instances.

Grouping method comparisons

While grouping generally improved fairness relative to the ungrouped baseline, the extent
of improvement differed markedly between methods. Random grouping was the most
variable: it achieved results comparable to more principled methods in some cases, but
it also performed the worst in others. For example, in Heart Disease, Random achieved
an Equal Opportunity disparity of 0.214, very close to Bicriterion at 0.232, and better
than Greedy at 0.312. However, in the Obesity dataset, Random performed poorly
with Equal Opportunity disparity of 0.142 compared to Bicriterion’s 0.091 and K-plus’
at 0.219. This sensitivity reflects the probabilistic nature of Random grouping: when
the feature set was small (e.g. 13 features in Heart Disease), there was a non-trivial
probability of forming useful combinations by chance, but as the feature space grew (47
features in Diabetes), the likelihood of randomly forming balanced groups diminished.

Greedy grouping, despite its higher computational cost, did not consistently outperform
Random. It often produced weaker fairness outcomes than Bicriterion and sometimes
even worse than the ungrouped case. For instance, in Diabetes, Greedy resulted an
Equalised Odds disparity of 0.025 compared to 0.016 and 0.013 with Bicriterion and
ungrouped, respectively. A similar trend was observed in Predictive Parity, where Greedy
recorded 0.850 in Heart Disease, which was the worst among all methods and worse
than the ungrouped baseline at 0.647. This indicates that the heuristic strategy of
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locally maximising dissimilarity did not guarantee globally fairer or more balanced group
structures.

Bicriterion consistently produced the strongest and most stable fairness outcomes across
datasets. By explicitly optimising both diversity (high average dissimilarity between
groups) and dispersion (ensuring no group is too similar), it achieved lower disparities
in almost all fairness metrics. For example, in Obesity, Equal Opportunity was reduced
to 0.091 with Bicriterion compared to 0.219 with K-plus, 0.103 with Random, and 0.128
with Greedy. Across datasets, Bicriterion also produced the lowest Fairness Overview
scores, such as 0.126 in Obesity compared to 0.192 with K-plus. These results confirm
that an explicit optimisation of diversity and dispersion provided a systematic advantage
over heuristic or random strategies.

K-plus occupied an interesting middle ground. It often performed comparably to Bicri-
terion in some metrics but diverged in others. For example, in the Average Distance
from Origin, which measures bias magnitude in the two-dimensional fairness quadrant,
K-plus achieved the best score of 0.104 in Diabetes compared to 0.136 ungrouped and
0.113 Bicriterion. However, it performed poorly in Predictive Parity, with 0.750 dispar-
ity in Heart Disease compared to 0.660 for Bicriterion and 0.647 for ungrouped. This
suggests that while K-plus could have spread groups well in terms of geometric distance
from fairness-neutral points, it did not guarantee balanced performance across multiple
fairness criteria.

Taken together, these results indicate that Bicriterion was the most reliable method, de-
livering consistent fairness gains across datasets and metrics. Random could sometimes
perform well but lacked robustness, while Greedy added little value relative to its compu-
tational cost, and K-plus showed promise in bias-magnitude reduction but struggled in
consistency. This suggests that Bicriterion should be the preferred grouping strategy in
fairness-critical applications, while K-plus may be valuable as a complementary method
in contexts where geometric balance is prioritised.

Cross-model perspective

The model-wise SHAP summaries reinforce that the grouping effect was not model-
specific. Under Bicriterion (Figure 5.7), linear and margin-based learners (Logistic Re-
gression, SVM) showed visibly flatter importance spectra than their ungrouped coun-
terparts (Figure 5.8), suggesting less reliance on a few dominant variables. It should
also be noted that the most contributing features (weight, height and age) remained
unchanged across different models for ungrouped cases, while they were not fixed for
grouped cases. This implies that grouping adjusted the use of features and instances ap-
propriately for a given model as opposed to the ungrouped case with more emphasis on
the inherent structure of the dataset that outweighed the choice of model when making
predictions.
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Figure 5.7: Comparison of SHAP plots from Overweight I classification with bicriterion grouping across
different models.
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Figure 5.8: Comparison of SHAP plots from ungrouped Overweight I classification across different models.
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Per-instance explanations

Complementing the global SHAP summaries, the waterfalls in Figure 5.9 provide an
instance-level view of how grouping redistributed contributions. For the Heart disease
task with Random Forest, grouped variants typically exhibited shorter extreme bars
compared to the ungrouped baseline, indicating reduced dominance by a small set of
correlated features. Bicriterion and K-plus, in particular, showed smoother step-down
profiles from the base value to the final logit/probability, consistent with the use of
more balanced features observed in the global SHAP plots. These per-instance patterns
mirror the aggregated results in Figure 5.6, where grouping flattened the importance
distribution, and they foreshadowed the reductions in group disparity visible in the

fairness heatmap (Figure 5.15).
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Figure 5.9: Comparison of SHAP plots for Heart disease classification by Random Forest
between different grouping methods including ungrouped case (part 1).
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Figure 5.9: Comparison of SHAP plots for Heart disease classification by Random Forest
between different grouping methods including ungrouped case (continued).

Beyond the Heart Disease example, the Breast Cancer panels also make the cross-model
effect of grouping clear. Under K-plus (Figure 5.11), all five learners produced waterfalls
with shorter extremes and a smoother, stepped progression from the base value to the
prediction, indicating that no single feature dominated the local decision. By contrast,
the ungrouped counterparts (Figure 5.12) often contained one or two large jumps with
almost no contribution from the non top-9 features, particularly for the tree ensembles,
signalling heavier reliance on a small subset of raw variables. This clear trend across
all models suggests the attenuation of extreme local attributions was induced by the
grouped representation rather than any single model class.

This qualitative analysis is quantified and illustrated in Figure 5.10 by aggregating each
instance’s absolute SHAP magnitude and decomposing it into the sum over the top 9
features versus the remaining features. Grouping systematically shifted mass from the
few largest contributors into the long tail. Continuing with the exemplar configuration
in Figures 5.11 and 5.12, the “rest” portion always increased when grouped across all
models. For tree-based models, it even escalated from 0.06 to 0.48 for Random Forest
and from 0.08 to 0.57 for XGBoost. Indeed, the increased total absolute attribution
was another consistent benefit of grouping. For example, Logistic Regression case also
yielded the smallest increase of 10%, but such increase was even approximately double
for SVM (0.46 — 0.88) and MLP (0.47 — 0.96).

Overall, Figure 5.10 supports the findings from Figures 5.11 and 5.12 by confirming that
grouping did not merely rescale the same few features, but it also broadened participation
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across many features at the instance level. First, the flatter global SHAP spectra seen
earlier under grouping manifest locally with smoother paths with fewer extreme bars
(compare Figures 5.11 and 5.12). Second, the larger “rest” component in Figure 5.10
suggests improved robustness to spurious correlations. When explanatory mass was more
evenly distributed, perturbations to any single (possibly proxy) feature had less leverage
on the prediction. This redistribution was consistent with the fairness improvements
reported in the heatmap (see Figure 5.15), where methods that flattened local waterfalls
and expanded the tail of contributing features also tended to reduce group disparity.

Instance-level SHAP magnitude decomposition by model
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Figure 5.10: Stacked bar chart of the total absolute SHAP attribution to compare the
configurations of Figures 5.11 and 5.12.
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Figure 5.11: Comparison of SHAP waterfall plots from Breast cancer classification with K-plus grouping

across different models.
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Figure 5.12: Comparison of SHAP plots from ungrouped Breast cancer classification across different models.
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SHAP range statistics

The spread of per-feature SHAP values was summarised by the range boxplots in
Figure 5.13 (XGBoost on Obesity Type II) to offer a geometric complement to the
SHAP summary and waterfall views. Grouped settings clearly increased the median
range (about 0.05-0.07) relative to the ungrouped baseline (0.0), with Bicriterion show-
ing the most stable spread overall. The interquartile range across different grouping
methods remained similar, but greedy and K-plus yielded more extreme outliers, but
still not as much as when ungrouped. This contraction aligned with the per-instance
waterfalls (Figure 5.9), where the cumulative contribution path from the base value con-
tained fewer extreme steps. Together with the global summaries (Figures 5.6, 5.7, and
5.8), these range statistics substantiate the claim that grouping dampened variance in
local attributions while broadening participation across features.
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Figure 5.13: Box and whisker plots of the SHAP ranges for classifying Obesity Type II
via XGBoost (part 1).
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SHAP Range Boxplot Obesity_XGBoost_ungrouped_grouped_class5
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Figure 5.13: Box and whisker plots of the SHAP ranges for classifying Obesity Type 11
via XGBoost (continued).

Bias quadrant analysis

The bias-quadrant plots juxtapose group-parity at the prediction level with explanation-
parity from local SHAP attributions on protected attributes, so points near the origin
indicate models that are fair both in outcomes and in how those outcomes are justified.
Figure 5.14 illustrates how grouping consistently pulled configurations towards the origin
along the y-axis compared with the ungrouped baseline, indicating reduced explanation
disparity. This corroborates previous findings on how SHAP values were more evenly
distributed for the grouped cases. Qualitatively, this movement corresponds to fewer
instances where the protected attribute exerted asymmetric local influence (i.e. lower
explanation bias). Meanwhile, the range and distribution of prediction bias was not
so influenced by grouping, as they all deviated from —0.2 to 0.8. This suggests there
still existed predictive disparity between different groups of sensitive attribute, but such
difference in outcome was not necessarily due to its membership. Even when grouped,
the unprivileged instances were still systemically a bit below the privileged instances in
terms of y coordinates for quadrants III and IV. This is illustrated in Figure 5.14, where
clustered red dots in bottom quadrants were consistently below the clustered blue dots
by prediction base rate of approximately 0.1. This indicates the outcome of unprivileged
instances were still somewhat suppressed or more encouraged to be negative despite the
grouping technique mitigating the explanation bias.

Across grouping methods, K-plus led to the most stable contraction towards the origin.
Its points were clustered in the low-bias region and avoided the quadrant I, where both
prediction and explanation biases are high. However, it should be noted that this stabil-
ity did not necessarily mirror its performance across other fairness metrics, since other
metrics purely focused on the disparity of outcome. Bicriterion also moved instances
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towards the origin and, in several tasks, attained the small geometric bias magnitude
(Average Distance from Origin). One insightful observation was how it did better job
in pulling the instances with negative SHAP values towards origin than that of posi-
tive values, as can be seen from Figure 5.14a with more clustering in quadrants II and
IIT than quadrants I and IV. This distinguishable performance in clustering indicates
Bicriterion was more effective in reducing the explanation disparity of the underprivi-
leged instances with lower SHAP than regularising the privileged instances with higher
SHAP. This is likely to be from the fact that Bicriterion accounts for maximising dis-
persion along with diveristy, which inherently sets more conservative lower threshold.
Greedy and Random were more variable as their instances often landed in quadrant II
(fair-looking predictions but residual explanation bias) or quadrant IV (prediction gaps
without attributional evidence on the sensitive feature), patterns that are visible when
explanation-level disparities do not track group-level ones.

Overall, the quadrant view complemented the above SHAP analysis. Methods that flat-
tened SHAP distributions and reduced reliance on a few dominant variables were the
same ones that moved points inward, reducing both outcome disparity and explana-
tion disparity on protected attributes. This integrated lens protects against ‘apparent
fairness’ at only one level by requiring progress on both axes, as encoded in the final
composite objective that emphasises explanation parity (7:3) to reflect the significance
of explainability in clinical use.
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Figure 5.14: Comparison between bias quadrant plots of Obesity via SVM across differ-
ent grouping methods (part 1).
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Figure 5.14: Comparison between bias quadrant plots of Obesity via SVM across different grouping methods
(continued).
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Fairness metrics across grouping methods

Beyond explainability, this study systematically evaluated fairness outcomes across the
five grouping strategies and the ungrouped baseline using six standard metrics: Equal
Opportunity, Equalised Odds, Predictive Parity, N-Sigma (Error Rate), Average Dis-
tance from Origin, and the aggregated Fairness Overview score. The heatmaps in Fig-
ure 5.15 provide a comparative visualisation, with each cell representing the metric value
for a given dataset and grouping method.

Ungrouped models exhibited substantial disparities for Equal Opportunity, particularly
in the Obesity dataset, where the unfairness score reached 0.520, far higher than any
grouped configuration. Grouping mitigated this imbalance, with the K-plus method
achieving a markedly lower value of 0.373. Bicriterion and Random did even better with
0.232 and 0.214, respectively. These results highlight that grouping reduced the extent to
which models unfairly privileged one class in true positive rates, a particularly important
consideration in healthcare applications where equitable sensitivity is critical.

A similar pattern emerged for Equalised Odds, with the ungrouped Obesity model show-
ing the highest disparity at 0.520. Grouping consistently reduced this value, with K-plus
again achieving the highest among grouping methods at 0.373. Notably, the Greedy
method recorded a moderately low disparity of 0.281, showing that while grouping in
general improved fairness, the choice of strategy significantly influenced the degree of
improvement.

Predictive Parity exhibited greater variance across datasets. For Heart Disease, Greedy
yielded the highest unfairness at 0.850, followed by K-plus at 0.750. In contrast, un-
grouped models performed relatively well in this case, with Heart Disease at 0.647. These
results suggest that predictive parity may worsen under grouping for certain datasets,
emphasising the trade-off between different fairness objectives.

The Obesity dataset showed the highest error rate disparity under Greedy (0.359), while
ungrouped models performed better at 0.175. The more advanced approaches such as
Bicriterion (0.233) and Random (0.315) fell in between. This indicates that grouping
did not universally improve error rate fairness and may have exacerbated imbalances
depending on the dataset and grouping method in some cases.

The average distance from origin of the bias quadrant captured overall deviation from
ideal fairness across all protected attributes. Obesity and Obesity_imbalanced consis-
tently recorded higher values, indicating these tasks were more fairness-challenging. For
Obesity_imbalanced, ungrouped and K-plus both showed the highest unfairness at 0.313,
whereas Bicriterion performed the best at 0.281. These results suggest that while group-
ing often redistributed feature contributions more equitably, it may have not always
minimised systemic unfairness in model predictions.

Aggregating across all metrics, Greedy (0.363 for Heart Disease) and K-plus (0.346
for Heart Disease) showed strong but dataset-specific improvements, while Bicriterion
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showed a consistent performance (0.271 for Heart Disease, 0.126 for Obesity). Ungrouped
models demonstrated competitive results in some cases (e.g. Heart Disease 0.359), but
consistently underperformed on Obesity, underscoring the importance of grouping for
fairness in multi-class settings.

A crucial part of this study involved comparing the balanced Obesity dataset against
the synthetically imbalanced Obesity_imbalanced variant created using SMOTE. The
imbalanced version exhibited noticeably higher unfairness in metrics such as Equal Op-
portunity (e.g. Random achieving 0.142 in imbalanced, compared to 0.103 in balanced)
and Average Distance from Origin (e.g. Ungrouped achieving 0.313 in imbalanced, com-
pared to 0.216 in balanced). This confirms that increasing label skewness amplified
disparities, with grouped methods partially but not fully mitigating the effect. In par-
ticular, K-plus and Bicriterion retained relatively robust performance under imbalance,
suggesting that grouping could buffer against some of the fairness degradation caused
by unequal class distributions.
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Figure 5.15: Equal opportunity, Equalised odds, Predictive parity, N-sigma and average
distance from origin of bias quadrant of models across datasets and grouping
methods. Fairness overview is calculated with more weight on explanation
parity (7:3) compared to group parity (see Equation (4.27)). Note that
lower is better for all fairness metrics above.
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5.4.3 Practical implications for clinical deployment

The patterns observed, namely in Figures 5.6, 5.10 and 5.15, have operational value
beyond metric improvements. By redistributing explanatory credit across a broader
set of variables and instances, grouped models made more effective use of what had
already been collected. In practice, this increases sample efficiency, since informative
signal is drawn from a wider portion of the cohort rather than a narrow proxy-dominated
subset. For prospective studies, this can ease recruitment pressure and reduce participant
burden, since acceptable behaviour may be reachable without continually expanding the
cohort solely to stabilise decision boundaries [94, 56]. Not only does SHIELD reduce
the burden for clinicians with equitable distribution of feature importance, but it also
makes the data collection more appealing for participants, since the framework assures
the contribution of individual instances to the outcome, avoiding a waste of records that
ungrouped cases have shown to exert.

A more even reliance on features also prevents from extravagant panel design. When
dominance by a few correlated variables is reduced, the marginal value of adding fur-
ther tests or questionnaires diminishes, which can improve data acquisition costs and
streamline workflows. Decoder-mapped SHAP further helps clinical teams to verify that
retained features remain clinically plausible, and to retire redundant or low-yield vari-
ables without losing traceability to the native feature space [3, 80].

These advantages do not license indiscriminate data reduction. Any operational savings
must be conditioned on non-inferior predictive performance, stability under external val-
idation, and domain review of feature rankings. In imbalanced or rare-event settings, the
same caution applies to fairness: apparent gains from dispersion should be corroborated
by parity on outcome metrics and by sensitivity analyses that test robustness to shifts
in class prevalence [102, 94]. Considering the above aspects, SHIELD offers a practical
route to improve equity and usability, while respecting clinical constraints on accuracy
and accountability, which still has room for improvment as identified in Section 5.5 and
Chapter 6.

5.5 Limitations

This study demonstrates that dissimilarity-based grouping with decoder mapping can
flatten SHAP distributions and improve several fairness measures, but it also has im-
portant limitations. These limitations do not negate the value of the findings, but they
delineate the conditions under which they hold and the directions where further the-
oretical and empirical work is needed. Hence, this section summarises these to guide
interpretation and motivate future work.

The first limitation concerns the breadth of model selection and hyperparameter search.
Although the number of groups K was initially planned to be searched alongside group-
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ing weights and model parameters using five-fold cross-validation, the search budget
was unfortunately limited [106, 17]. In particular, the range explored for K and the
weighting between performance and fairness may not fully cover the space of Pareto-
optimal trade-offs. The methodology in this thesis treats K as a tunable variable within
Bayesian optimisation in principle, but in practice several configurations were selected
by inspection and then held fixed to compromise with feasible runtime, which risks set-
tling on locally adequate rather than globally optimal settings. The net effect is that
some reported improvements could be sensitive to search scope and seed choice.

An alternative splitting strategy not explored in this thesis is adversarial data splitting
[9], which intentionally constructs more challenging testing set to stress generalisation
under distribution shift. Because SHIELD relied on conventional random stratified splits,
it may understate model fragility when faced with edge cases. Future work should
evaluate adversarial or hard-split schemes in clinical contexts to provide a more rigorous
test of robustness.

The decoder-mapped explainability pipeline trades exactness for traceability. To project
latent attributions back to original features, SHIELD uses normalised absolute decoder
weights. This preserves a clear bridge from latent coordinates to raw variables, but it
discards signs and compresses attribution through a linear weighting that is not itself
a Shapley solution. In correlated or highly non-linear regimes this mapping can blur
sparsity and directionality, so feature-level explanations should be read as principled ap-
proximations rather than literal decompositions of the latent-space SHAP values. While
this choice enables end-to-end auditability in grouped spaces, it can understate domi-
nant effects that are concentrated in a small number of latent coordinates or overstate
diffuse ones when decoder columns are broad.

Fairness assessment is another area where design choices limit generality. The evaluation
emphasised a holistic perspective, which consider group-based metrics such as Equal
Opportunity and Equalised Odds together with an N-Sigma normalisation of error gaps,
and an explanation-level audit via bias quadrants. These metrics capture salient aspects
of parity but embody assumptions about acceptable trade-offs when base rates differ. As
discussed in the methodology, Equalised Odds can conflict with clinical realities if groups
genuinely have different prevalences, making Equal Opportunity a more defensible target
in some settings. The bias-quadrant analyses further show that grouping reliably reduces
explanation disparity along the attribution axis, yet prediction disparities can persist
across the full range, indicating that more equitable rationales do not automatically
guarantee equitable outcomes. These choices leave out individual-fairness notions and
counterfactual or causal criteria. As such, the conclusions pertain to the specific set of
statistical metrics adopted.

The study scope also constrains external validity. All experiments were conducted on
structured tabular datasets with supervised classification endpoints. This thesis did not
evaluate regression, time-to-event outcomes, or free-text modalities, and there were no
external, prospective clinical validation. Performance targets and fairness constraints
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were optimised under five-fold cross-validation rather than assessed with feedback from
domain experts, which limits claims about deployment robustness. The domain knowl-
edge was only used to cross-check the findings. Moreover, many visual analyses present
single trained instances per configuration for clarity, so sensitivity to random seeds and
reinitialisation is only partially explored, although the randomness still supports gener-
alisability of the framework.

Finally, the findings are empirical. They align with conceptual expectations that group-
ing reduces over-reliance on a few correlated features and diffuses attributional bias,
but formal guarantees are not provided in this thesis. In particular, the author has not
proved conditions under which the risk of the grouped model is bounded relative to the
ungrouped baseline, nor characterise when decoder-mapped attributions are provably
faithful at the original feature level. The next Chapter 6 outlines how such guarantees
might be approached, including bounds on risk inflation and stability of fairness metrics
under grouping-induced perturbations. Until then, the results should be interpreted as
credible patterns in the examined settings rather than universal laws.
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Chapter 6

Future works

6.1 Theoretical validation of grouped representations

The empirical study suggests that grouping by conditional dissimilarity and decoding
back to the original variables can flatten attribution spectra and often improve fairness
with only modest performance cost. A natural next step is to formalise when these
effects should be expected. This section outlines several concrete propositions and proof
strategies that can be developed into rigorous results. Each target is stated with minimal
assumptions, an illustrative example, and a sketch of the argument, so that they can
serve as starting points for formal analysis.

The first target is to relate predictive risk before and after grouping. Let g denote the
encoder from raw features to the grouped latent space and D be the linear decoder used
to map latent attributions back to the original variables. For a learner h acting on the
latent space, define the composed predictor f(x) = h(g(z)) and the reference predictor
f trained on the raw features. Under a Lipschitz loss ¢, a bound of the form

R(f) — R(f) < CyReconErr(Dog) + Cy Acap(h, f) (6.1)

is expected, where R denotes expected risk, ReconErr measures encoder-decoder distor-
tion, and Ac,p captures the difference in effective capacity between h and f for some
constants C7,Cy [110]. The proof strategy follows standard stability or Rademacher-
complexity arguments [13]. If the decoder is near-isometric on the data manifold, the
latent hypothesis class is not more complex than the raw one, and reconstruction error
is small, then excess risk is controlled. In the linear case with an orthonormal decoder
and a convex loss, the risk can even be preserved exactly by projecting the raw optimum
into the latent span, which explains why the empirical accuracy often remains stable
when grouping is applied.

The second target is to establish stability of decoded SHAP attributions. Let qﬁjD (f,x)
denote the decoded contribution assigned to original feature j at instance x. When two
decoders D and D’ are close in operator norm and the explainer is locally Lipschitz in
the model parameters, one expects a perturbation bound

|07 (fr2) = 87 (f.2)] < Lexpt |D = D'|| [lz(«)]], (6.2)
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where z(z) = g(z) is the latent representation and Leyp, summarises the explainer’s
sensitivity. For linear models, this reduces to a simple product of weight and decoder
differences, and for tree ensembles, the path probabilities of TreeExplainer give an analo-
gous control. This helps to justify that changes from the global SHAP profiles are driven
by representation changes rather than instabilities of the decoding step itself [74, 60].

The third target connects grouping by conditional dissimilarity to fairness leakage. Re-
call that the grouping aims to reduce I(X;; A | Y'), which is the information a feature X;
carries about a protected attribute A once the clinical state Y is known. Let Z = g(X) be
the grouped representation. If the grouping achieves I(Z; A | Y') that is uniformly lower
than I(X; A |Y), then for any thresholded score with calibrated class-conditional distri-
butions, Pinsker-type inequalities imply that disparities in true and false positive rates
are bounded above by constants times /I(Z; A |Y) plus a calibration term [35]. This
would formalise the intuition that reducing conditional dependence between representa-
tion and protected attribute limits the room for equalised-odds violations, and explains
the systematic improvement of the origin in the bias-quadrant plots when grouping is
applied [34, 60].

The fourth and final target concerns identifiability of proxy variables after grouping.
Suppose a small subset of original features retains large I(X;; A | Y) even after grouping
and decoding, and these features repeatedly receive high decoded SHAP across instances
in the unprivileged group. Under mild regularity, one can show that such features are
flagged with high probability by a simple test that combines estimation of CMI with a
dominance score based on the waterfall top-k mass. This provides a theoretically justified
screening rule for proxy auditing that complements the visual diagnostics already used
in the previous chapter.

Together, these targets outline a coherent goal. By bounding excess risk in terms of
encoder-decoder distortion and capacity, proving stability of decoded attributions, and
tying conditional information leakage to outcome disparities, SHIELD would rest on clear
theoretical pillars. Each result is directly connected to a component already implemented
in this thesis, so that formal proofs can build on the proposed pipeline rather than start
from scratch. As these theorems are developed, they will also guide practical choices,
for example how to better set K, how to constrain decoders for attribution stability,
and when grouping is most likely to deliver fairness gains without unacceptable loss
of accuracy.

6.2 Instance level extension

The interpretability of SHIELD could be extended to the instance level. While this
study has shown how grouping features by conditional dissimilarity and mapping latent
representations back to the original space enhances fairness and interpretability mainly
at the feature level, the explanations still treat all training instances uniformly. A natural
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next step is to quantify how individual training points themselves contribute to model
behaviour. Early work in this direction includes Data Shapley [50], which evaluates the
value of each training instance to overall model performance. Building on this line of
work, more recent approaches such as residual Shapley decomposition (RSHAP) [72]
provide scalable approximations by focusing on residual error contributions rather than
retraining-based value estimation. In this sense, RSHAP can be viewed as an extension
that retains the Shapley-theoretic grounding of Data Shapley while making it feasible
for larger datasets and complex models.

Integrating these approaches with the proposed pipeline would allow a more compre-
hensive view of unfairness. For example, combining the decoder-weight mapping with
residual instance attributions could uncover whether certain features’ undue influence
is driven by a handful of mislabelled or systematically biased training points, an in-
sight that would not be visible from feature-level SHAP alone. This is particularly
relevant in fairness auditing with bias quadrant plots, where instance-level scores could
show whether unfair prediction disparities originate from a small subset of influential
examples rather than the model structure or grouping method. Ultimately, attribution
analyses at both feature-level and instance-level would support more robust, fair, and
trustworthy pipelines that align with clinical demands for transparent and justifiable
decision-making.

6.3 Application of the framework to regression problems

Another intriguing direction for future research is to test SHIELD on regression prob-
lems. This thesis conducted classification experiments, which grouped and ungrouped
models often achieved similar predictive accuracy despite exhibiting notably different
distributions of feature importance across grouping methods. This stability may be due
to the fact that classification tasks rely on a discrete decision boundary. That is, even
if feature attributions are redistributed, the most probable class remains unchanged as
long as its margin is preserved. In regression, however, the target is continuous and
prediction errors scale directly with contribution magnitudes. Hence, small differences
in how grouped versus ungrouped features perform may aggregate to result in larger
discrepancies in prediction accuracy.

Applying SHIELD to regression tasks would reveal whether the same benefits observed
here, including flattened SHAP distributions and improved fairness, carry over when
predictions are sensitive to fine-grained feature weightings. It would also open oppor-
tunities to evaluate fairness under continuous error metrics such as mean absolute error
disparities or mean residual difference [132, 30], complementing the classification-focused
measures used in this thesis. The author hypothesises that while grouping may still re-
duce over-reliance on dominant variables, its impact on accuracy-fairness trade-offs will
be more pronounced in regression, particularly in cases with skewed feature distributions
or outlier-heavy targets.
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Chapter 7

Conclusion

This thesis investigated whether grouping features by conditional dissimilarity and map-
ping grouped representations back to the original space via a decoder could make ma-
chine learning models both more explainable and equitable to support clinical decision.
The proposed pipeline integrated three core components: a dissimilarity-driven grouping
stage, a decoder that localises latent effects to original variables, and an audit suite that
couples attributional analyses with group-parity metrics. SHIELD was evaluated across
various clinical tabular datasets and multiple classifiers, including linear, margin-based,
neural and tree ensembles, to test for model-agnostic effects.

FEmpirically, the approach consistently reduced concentration of importance in a few
dominant variables. Global SHAP summaries showed flatter spectra under grouped rep-
resentations relative to ungrouped baselines, indicating broader participation of features
in the decision process. Per-instance waterfall plots further revealed fewer extreme steps
from base value to prediction, aligning with narrower ranges in local attributions for
grouped models. Taken together, these results corroborated the claim that grouping
dampens variance in local attributions and encouraged more use of information of a
given data.

Fairness analyses complemented the explainability findings. Using six standard metrics,
including Equality of Opportunity, Equalised Odds, Predictive Parity, N-Sigma error,
Average Distance from Origin in the bias quadrant, and a composite Fairness Overview,
ungrouped cases often exhibited substantial disparities, which were improved to a differ-
ent degree across grouping methods. This was especially pronounced when the dataset
was scarce and imbalanced. This exemplified that grouping could lessen the degree to
which models privilege one group, which is especially relevant in healthcare screening
and triage.

In particular, the bias-quadrant view provided an integrated perspective by plotting
prediction parity against explanation parity on protected attributes. Grouping reliably
contracted points toward the origin along the attribution axis, signalling reductions in
explanation disparity, even when prediction disparities persisted across the observed
range. This underscored a key insight: improving how decisions are justified does not
automatically equalise outcomes, so methods need to be assessed on both axes. In
this view, K-plus most consistently contracted toward the low-bias region, though this
geometric stability did not always translate to the best scores across all fairness metrics.
In this respect, Bicriterion delivered the most consistent overall improvements.
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Different grouping methods exhibited different trends. Bicriterion, which balances di-
versity and dispersion during grouping, was the most reliable across tasks. K-plus often
excelled at reducing geometric bias magnitude but was less consistent on parity metrics.
Random grouping occasionally matched stronger methods in certain configurations but
lacked robustness. Greedy strategies were computationally heavier without commensu-
rate gains. These patterns, together with the attributional evidence above, suggested
that explicitly optimising both diversity and dispersion is a pragmatic choice if equitable
learning needs to be promoted.

Nevertheless, the study’s scope and design placed boundaries on external validity. All
experiments used structured tabular data with supervised classification endpoints and
cross-validation. However, the study did not evaluate regression, time-to-event outcomes,
free-text modalities, nor conduct prospective clinical validation. Hyperparameter search
spaces were finite, and the number of groups was not systematically optimised. Finally,
the proposed claims were empirical and aligned with the domain knowledge but were
not yet corroborated by formal guarantees on risk or attributional faithfulness after
decoding.

The thesis closed by outlining three promising avenues for consolidation and extension.
First, theoretical foundations could establish conditions under which grouped represen-
tations preserve predictive risk and stabilise fairness metrics, yielding explicit bounds
and diagnostics that connect back to practice. Second, extending the framework to
instance-level analysis via residual Shapley decomposition would help to identify indi-
vidual instances that propagate bias or instability into the latent space, enabling tar-
geted data remediation. Third, applying the pipeline to regression would test whether
the accuracy-fairness trade-offs observed here persist when errors vary continuously and
can be evaluated with continuous fairness criteria.

In practical terms, the evidence suggested that dissimilarity-based grouping with decoder
mapping could deliver benefits beyond metric gains. By drawing signal from a broader
share of features and instances, grouped models are more sample-efficient and can reduce
participant burden in prospective studies, since acceptable behaviour of models may be
achievable without continuously enlarging the cohort. A more equitable reliance on fea-
tures also supports parsimonious testing designs and data collection protocols, saving
acquisition and processing costs while keeping explanations traceable to native clini-
cal features through decoder-mapped SHAP. These operational benefits should always
be conditioned on non-inferior predictive performance, external validation, and clinical
plausibility of the induced feature rankings, which SHIELD has empirically corrobo-
rated.

In conclusion, the results showed that grouping dissimilar features via CMI, auditing
both outcomes and explanations, and preserving traceability back to clinical variables
form a coherent path toward transparent and equitable decision support. While there
remains work to do on theory, instance-level attributions, and broader task coverage, the
contributions of this thesis provide a concrete step from concept to practice. SHIELD
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7 Conclusion

is lightweight, model-agnostic, and compatible with existing pipelines. It also points to
a responsible way forward in which accuracy, explainability, and fairness are pursued
together rather than heavily compromising each other. In doing so, this work synergised
the four research areas in Figure 1.1 and contributed to the virtuous circle outlined in
Section 1.1: methodological advances build more trustworthy and equitable explana-
tions, which foster confidence in clinical application, and this in turn motivates further
methodological refinement.
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