Revisiting Preprocessing for Fair ML: Statistically Robust
Evaluation and a Novel EMD-Driven Optimisation Method

1. Introduction

» Motivation: ML models used in high-stakes domains can
exhibit systematic bias against protected groups like

gender or race.

Gap: Prior studies on preprocessing-based bias mitigation

often lack statistical validation and broad comparative

evaluation.

Approach: We compare instance removal, resampling,

and feature transformation methods across multiple
datasets, models, and fairness metrics using cross-

validation and hypothesis testing.

Key contribution: An automated, statistically grounded

optimisation of Earth Mover’s Distance (EMD)-based

Instance removal.

Findings: Distribution-aware preprocessing achieves

substantial fairness improvements, while preserving

predictive performance.
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2. Methodology

-]
o

Datasets

/ D1: Heart \

D2: Liver
D3: Default

Fairness Metrics

/FM1: Equalised Odds \
FM2: Equal Opportunity
FM3: FPR Parity
FM4: Treatment Equality
FMS5: Demographic parity

D4: Income
D5: Coupon
D6: COMPAS
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Apply

P1: EMD-based Male Removal
P2: EMD-based Female Removal
P3: SMOTE Oversampling

P4: Random Undersampling

P5: Disparate Impact Remover
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PO: Baseline

FM6: Balanced Error Rate
FM7: Conditional Statistical Parity
\FM& Discrimination Score /

Evaluate Fairness with
Statistical Hypothesis Testing

M1: Support Vector Machine (SVM)
M2: Logistic Regression (LR)
M3: K Nearest Neighbours (KNN)

Train and Test via k-fold

> M4: Naive Bayes

M5: Random Forest

Cross-Validation M6: Decision Tree
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Fairness is evaluated within a cross-validated statistical framework that treats group disparities as inferential quantities rather
than single-run estimates. For each dataset—model configuration, fairness violations are identified using parametric or non-
parametric tests across multiple fairness definitions, enabling robust comparison of both the magnitude and stability of bias
mitigation effects. Furthermore, the proposed EMD-based instance removal applies a coarse-to-fine search to identify the
minimal number and type of instances required to be removed, achieving statistically insignificant distributional disparities.

3. Fairness Results

EMD-based instance removal (P1, P2) reduced statistically
significant fairness violations by approximately 40% on
average, compared to around 25% for resampling methods
(P3, P4) and 2% for feature transformation approach (P5).
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4. Performance Results

Despite the fairness gains, EMD-based removal largely
preserved predictive performance, whereas resampling
methods introduced more noticeable trade-offs, including
reduced accuracy but increased recall in several datasets.

Performance comparison between datasets and methods
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5. Conclusion and Future Work

» Statistically grounded preprocessing, particularly optimised EMD-based instance removal, provides consistent
reductions in fairness violations without sacrificing predictive performance.

and substantia

» Future work wi

| explore hybrid EMD strategies that jointly consider male (P1) and female (P2) instance removal to
balance interventions across groups, as well as extensions to intersectional attributes and multi-class datasets.
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